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Abstract
In his 1802 book ”Acoustics”, Ernst Florens Friedrich Chladni describes how to visualize different vibration modes
using sand, a metal plate, and a violin bow. We will review the underlying physical and mathematical formulations
and lift them to the third dimension. Finally, we present some of the resulting three dimensional Chladni figures.

Introduction

In 1802, Ernst Florens Friedrich Chladni (November 30th, 1756 – April 3rd, 1827, Figure 1a) published
his book ”Acoustics”. The book describes amongst other things an experiment by which different modes of
vibration can be visualized. Namely, sand is distributed over a thin metal plate. A violin bow is then struck
alongside the plate, causing it to oscillate. See Figure 1b for an illustration. Chladni discovered that the sand
grains form different patterns corresponding to the varying vibration modes. His book contains a table of
patterns he was able to create in his experiments, see Figure 1c.

(a) Portrait of Ernst Florens
Friedrich Chladni by H. Adlard,
19th century.

(b) Illustration of the violin bow ex-
periment, taken from [8], 1879.

(c) Table of Chladni figures from
Chladni’s book ”Acoustics”, 1802.

Figure 1: Historical illustrations of Chladni, his experiments, and results.

Since its first description, the Chladni experiment has been developed further by several other scientists
like Margaret Watts-Hughes, Henry Holbrook, or Hans Jenny [2]. Despite their elegance and artistic value,
Chladni figures have applications in the construction of musical instruments as illustrated in Figure 2a.
Finally, utilizing modern technology such as speakers, the Chladni experiments can easily be recreated with
a wide range of frequencies and different thicknesses of metal plates, see Figure 2b.
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(a) Chladni figures on the body shape of a guitar, wikimedia com-
mons.

(b) A Chladni figure obtained in a modern ex-
perimental setup. c©High Contrast, wikimedia
commons.

Figure 2: Application and modern adaption of Chladni figures.

Physical and Mathematical Background

In an experimental physical setup, Chladni figures can be produced by inducing oscillation on some plate.
The physical formulation of damped oscillation of a string is given by the following differential equation

m
∂2

∂2t
h(x, t) + d

∂

∂t
h(x, t) + kh(x, t) = 0, (1)

where h(x, t) is the displacement at position x and time t,m is the mass which oscillates, d is the dampening
constant, and k is the spring constant. In the following we will always assume d = 0 since the physical
systems in consideration are all stimulated. Consider the one-dimensional case of an oscillating string. Then
equation (1) has two basic solutions, based on the position x on the string and a parameter u

sin(u · π · x±
√
k/m · t) and cos(u · π · x±

√
k/m · t). (2)

Chladni figures arise from those linear combinations of (2) which describe a stationary wave. Those are
obtained by combining the positive and negative version of (2) such that they can cancel each other out at
certain points. Using the trigonometric addition formulas we obtain

sin(u · π · x+
√
k/m · t) + sin(u · π · x−

√
k/m · t) = 2 sin(u · π · x) · cos(

√
k/m · t), (3)

with similar results for the difference of the positive and negative formulations, as well as for the cos terms.
When imposing Dirichlet or Neumann boundary conditions on the differential equation,

Dirichlet
{
h(0, t) = h(1, t) = 0 ∀t ∈ R Neumann

{
∂
∂xh(x, t) |x=0=

∂
∂xh(x, t) |x=1= 0 ∀t ∈ R (4)

we see from (3) that the boundary conditions can only be satisfied for u ∈ Z.
Now the sin-solution from (2) solves the Dirichlet problem from (4) while the cos-solution from (2)

solves the Neumann problem from (4). The corresponding one-dimensional Chladni figure is now given by
the zero level set of the following functions, with a parameter A ∈ R,

A · sin(u · π · x) and A · cos(u · π · x) (5)
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for the Dirichlet and Neumann problem respectively. Finally, our generalization of Chladni figures to the
third dimension uses the following function, with A, . . . , F ∈ R,

A · sin(u · π · x) · sin(v · π · y) · sin(w · π · z) +B · sin(u · π · x) · sin(v · π · z) · sin(w · π · y)
+C · sin(u · π · y) · sin(v · π · x) · sin(w · π · z) +D · sin(u · π · y) · sin(v · π · z) · sin(w · π · x)
+E · sin(u · π · z) · sin(v · π · x) · sin(w · π · y) + F · sin(u · π · z) · sin(v · π · y) · sin(w · π · x),

(6)

respectively with cos terms for the Neumann boundary conditions. Note that similar to the one-dimensional
case, conditions (4) hold if and only if u, v, w ∈ Z. These generalizations follow in a manner similar to the
one described above from (1) when inserting three positions x, y, and z. For a more thorough account on the
physics behind Chladni figures see [6] and for a description of the underlying mathematics refer to [4].

(a) (b) (c)

Figure 3: Figures (a) and (b) are dual to each other as the parameters are the same and only the sin are
replaced by cos for the second picture, while (c) displays the cubical grid creating the checkerboard pattern
on front- and backside. Note that the grid is twice as fine in all other figures.

Image Production Techniques

Apart from physical experiments, as shown in Figure 2b, computer experiments are conducted in order to
produce Chladni figures. A well-written description for the production of Chladni figures with MATLAB is
given in [3], where the authors employ both a spectral and finite difference method. A different route is taken
by [1], where the Chladni figures are the result of a stochastic process. Finally, [7] uses Max/Msp/Jitter to
create images of three-dimensional Chladni figures.

Our approach consists of plotting the zero level set of the expression given in (6) in the bounding box
[−1, 1]3 for prescribed parameters A, . . . , F and u, v, w by utilizing PovRay [5]. For colored versions of the
images we refer the interested reader to the online version of this article. Parameters for the Chladni figures
shown in Figures 3 and 4 are given in the table below. Note that these shown patterns could be experimentally
reproduced and thus confirmed, e.g. by placing some light particles in viscose fluid which is stimulated by a
speaker.
Figure 3c shows the front side (light colors)
and back side (dark colors) as well as the
coarse cubical grid that induces a checker-
board pattern on each side of the surface by
using different colors for each two neighbor-
ing cubical cells. The grid is chosen twice as
fine in Figures 3a, 3b, and 4.

Figure Type u v w A B C D E F
3a sin 1.0 1.0 2.0 0.5 2.0 2.0 1.5 1.5 0.5
3b cos 1.0 1.0 2.0 0.5 2.0 2.0 1.5 1.5 0.5
3c sin 3.0 1.0 2.0 0.2 2.0 2.0 0.2 0.2 2.0
4a sin 2.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4b cos 2.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4c sin 2.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4d sin 2.0 3.0 1.0 0.5 -0.5 2.0 1.5 1.5 -1.1
4e sin 4.0 1.0 2.0 0.2 2.0 2.0 0.2 0.2 2.0
4f cos 1.0 0.0 -2.0 -1.0 1.8 1.8 -1.0 -1.0 1.8
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(a) (b) (c)

(d) (e) (f)

Figure 4: Figure (c) is a detail of (a) as it only shows the level set in [0, 1]3. Note that (f) does not have a
dual since v = 0 would result in the whole expression (6) being zero.
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