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Abstract

Islamic star patterns are traditionally drawn with compass-and-straightedge constructions, which yield geometrically
precise results, but are often unintuitive to work out. We present a more declarative paradigm for construction, where
users can draw patterns by hand and then apply constraints to improve and beautify the design. This system applies
concepts from CAD systems like geometric constraint satisfaction and numerical optimization in a highly symmetric
and aesthetic context. We exhibit some representative results generated by our system.

Background and Overview

Traditional Islamic ornament features intricately interlocking patterns with complex geometries and sym-
metries. Construction and design of these patterns was historically a closely guarded secret passed down
from craftsman to apprentice, but some scholars have worked out compass-and-straightedge reconstructions
for many classical Islamic designs [[1]]. However, while these procedures successfuly construct the original
designs, they can be unintuitive and the reference points for the constructions may not always be obvious
from the final design.

Instead of this imperative approach, we can take a declarative approach to Islamic geometric design.
Extending on work like Kaplan’s Taprats [2], we previously built Sliceform Studio [3] as a graphical interface
where users inscribe patterns within tiles and drag tiles to create tilings. This allows artists to rapidly translate
the pattern in their head to one on the screen, but drawing with a mouse is imprecise. Manually-drawn
designs often contain more imperfections than those drawn with compass and straight-edge — for example,
lines which were intended to be parallel might end up diverging slightly.

In this paper, inspired by similar features in CAD systems like Solidworks, we aim to build a system
where users can declare various geometric constraints that their hand-drawn pattern should obey. The system
resolves the constraints by transforming them into a numerical optimization problem. The vertices of the
pattern yield degrees of freedom (i.e. decision variables), while the geometric constraints can be converted
into an objective function, which we can seek to minimize over the state space with numerical optimization
techniques.

Our strategy for optimization is as follows:

1. Specify segments in the design that should obey some constraint.
2. Identify the control points that generate the given segments.
3. Construct an objective function based on the constraint.

4. Vary the control points from (2) to minimize the objective function from (3).

The next few sections will discuss each of these steps in detail.
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Segments and Control Points

In the vocabulary of this paper, control points are a set of points with coordinates specified by the user;
Sliceform Studio extends them symmetrically to produce patterns in a tile. A pattern is a piecewise linear
path that starts and ends on the boundary edges of a given polygonal tile. A segment is a linear subcomponent
of a pattern that starts and ends with either a vertex or an intersection point.

When the user selects a segment, Sliceform Studio identifies the control points that generated that
segment, and asks the user to explicitly identify the ones that are allowed to vary. This is because pattern
optimization is often directed — for instance, the user might want to vary A but holding B, C and D constant
so that AB is parallel to C'D.
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(a) Three control points (in (b) Examples of valid segments (shaded in blue) and their corresponding control
red) generate the full sym- points (circled). Note that the control points may or may not coincide with the end-
metric pattern. points of the segment.

Figure 1

Suppose there are n control points, that is, 2n real-valued degrees of freedom. We can construct a
function updateControlPoints that takes in a vector in R%", updates the corresponding coordinates of the
control points and returns a tile configuration with regenerated patterns.

Constraints and Objective Functions

We have constructed a number of constraints that we have found to be sufficient to accomplish most op-
timization tasks in practice. Each of these constraints has a corresponding non-negative penalty function,
where the constraint’s penalty function equals zero if and only if the constraint holds.

Define /(AB) as the acute angle AB makes with the horizontal. Here are a few of the most common
constraints:

Constraint Penalty Function

Parallel /(AB) — Z(CD) ’

Equal Length | ||[AB]| — ||CD|| ‘

Bisect [AE|| - [EB||+|[CE| - | ED||
where AB and C'D intersect at F

If multiple constraints are specified, we sum up each of the individual penalty functions to yield a global
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objective function evaluateObjective. This might seem dimensionally problematic — how can we add
up penalty functions if some of them return lengths while others return angles? However, if we merely
see each penalty function as returning dimensionless quantities that happen to go to 0 as the constraint is
fulfilled, there is no theoretical difficulty.

Most of the time, some solution exists where the multiple specified constraints can be satisfied simul-
taneously. However, if the constraints are incompatible (e.g. setting the same pair of segments to be both
parallel and perpendicular), the minimum of the global objective function may not set all or any of the
constituent penalty functions to 0.

To address this, Sliceform Studio allows the user to specify multiplicative coefficients (by default 1) to
be applied to each constraint when summed up to yield the global objective. This gives the user finer-grained
control to bias the optimizer towards solving one constraint in favor of a second incompatible one.

Numerical Optimization

We compose updateControlPoints and evaluateObjective to yield optFunc, a function that takes
in a vector from R?" and returns a real-valued objective to be minimized. The problem is reduced to a
purely numerical one — we can then pass optFunc and the initial value of the state vector into one of many
nonlinear optimization procedures (for example, conjugate gradient descent).

Quick experiments, however, motivated two further corrections to the evaluateObjective function:

1. Sometimes, varying a control point too far from its original position changes the topological relation-
ships of the patterns — for example, causing two patterns that didn’t previously intersect to now cross.
To prevent this, we model each pattern vertex in the tile as an electrostatically charged particle that
repels every other vertex. The sum of the repulsion force between every pair of vertices is added as a
correction term in evaluateObjective and prevents any two vertices from coming too close to each
other during optimization.

2. Sometimes, the numerical optimization returns a solution where the constraints are technically satisfied
but control points lie outside the tile. This is obviously undesirable, and we resolve this by introducing
a small penalty term for control points close to the boundary of the tile, and a larger penalty term for
control points outside the tile.

(a) Pattern vertices may cross each other during optimization, causing the (b) Optimization may move control
pattern structure to be qualitatively different. points beyond tile boundaries.

Figure 2: Two types of analomous behavior that can arise during numerical optimization; we avoid them by
introducing correction terms to the objective function.
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Choice of optimization procedure

The two correction terms above are not differentiable; when added to evaluateObjective, nonlinear opti-
mization methods like conjugate gradient descent that rely on a numerical gradient are no longer applicable.
Hence, we have opted to use Powell’s method [4], an algorithm that searches in the n-dimensional space for
the minimum along a set of n direction vectors that are updated according to the past displacements. This
algorithm is ideal as it does not require taking derivatives.

Results and Discussion

We find that pattern optimization works very well in practice and is able to beautify a wide range of hand-
drawn designs. Indeed, the existing flexibility of Sliceform Studio’s pattern design capabilities coupled with
this new optimization functionality are able to rapidly replicate many classical designs, for which previously
only lengthy compass-and-straightedge constructions were known. A simple example is shown below.

Figure 3: Before and after the highlighted pair of segments are constrained to be perpendicular. The circled
controlled points indicate the degrees of freedom.

A more extensive video showcase of the entire workflow is available at https://youtu.be/60PgB_
Gh-nE. The reader is invited to try out the system at http://www.sliceformstudio.com/app.html?
template=optimize_example.

One area for future improvement is performance — the optimization process currently takes anywhere
between 1 and 10 seconds. We also hope to eventually develop heuristics that allow the system to automati-
cally find and correct small imperfections, instead of requiring users to explicitly specify constraints.

We thank Craig Kaplan for early discussions that influenced the development of this work.
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