
Koch-Like Fractal Images

Vincent J. Matsko
Department of Mathematics
University of San Francisco

vince.matsko@gmail.com

Abstract
The Koch snowflake is defined by a recursive sequence of forward moves and turns. By modifying the angles at
which the turns are made, a surprising variety of images may be produced. Conversion of recursion to iteration
allows for straightforward image and movie generation.

Introduction

The Koch curve, shown in Figure 1, is perhaps the simplest fractal which may be generated recursively. It

Figure 1 : The Koch curve.

may be represented by the following rule:

F + 60 F + 240 F + 60 F. (1)

For the first iteration of the Koch curve, we go forward a given length, then turn counterclockwise 60◦,move
forward again, turn counterclockwise 240◦ (equivalently, 120◦ clockwise), forward again, turn 60◦, and then
move forward one last time. This is clearly seen in the first curve in Figure 1.

Next, recursively replace each of the segments just drawn with a copy of the first iteration, scaled by
a factor of 1/3. Then repeat as many times as desired. Practically, the resolution of the computer screen or
printer will be reached – although abstractly, this process may be repeated infinitely many times.

One day, while explaining this to Thomas (one of my students), he asked what would happen if the
same algorithm were used, but the angles were changed. A remarkably wide range of behaviors may be
observed, two of which are shown in Figure 2. The path may close and repeat after just a few iterations, or
after thousands. Most paths do not close and repeat, but exhibit chaotic behavior. This paper provides an
introduction to an analysis of these behaviors.

Bridges Finland Conference Proceedings

293



Angles of α0 = 11 and α1 = 191. Angles of α0 = 0 and α1 = 12.

Figure 2 : Sample results using a fractal algorithm.

Recursion vs. Iteration

While the recursive generation of these images is fairly simple to implement, there are difficulties with this
approach. For example, the image in Figure 3 would require 6 levels of recursion to create, resulting in
46 = 4096 steps forward. Not only are some segments traversed more than once along the way, but just 1440
steps of the algorithm are necessary to actually produce the final image. To study this behavior, an iterative
algorithm to generate these images is helpful.

Figure 3 : Angles of α0 = 30 and α1 = 186.

Suppose two angles α0 and α1 are given (the choice of subscripts will be explained soon), and consider
the recursive procedure described by

F + α0 F + α1 F + α0 F.

Matsko

294



The first level of recursion results in

(F+α0 F+α1 F+α0 F)α0 (F+α0 F+α1 F+α0 F)α1 (F+α0 F+α1 F+α0 F)α0 (F+α0 F+α1 F+α0 F),

and in general, higher levels of recursion results in a sequence of instructions

F + θ1 F + θ2 F + θ3 F . . . F + θk F . . . ,

where each θk is an angle determined by the recursive process. To create an iterative procedure, we need to
determine if each θk is α0 or α1.

To do this, it is useful to define τ(k) as the parity of the highest power of 2 which is a factor of k. For
example, τ(k) = 0 if k is odd, and τ(40) = 3 since 40 = 23 · 5 and 3 is the highest power of 2 dividing 40.
We then have the following result.
Proposition:

θk = ατ(k). (2)

We will prove this by induction on the level of recursion. The base case is immediate. Now suppose
the formula for θk is valid for the first n levels of recursion – that is, the first 4n − 1 angle choices. We now
carefully write out the angles choices for the first n+ 1 levels of recursion:

θ1, . . . , θ4n−1, α0, θ4n+1, . . . , θ4n+(4n−1), α1, θ2·4n+1, . . . , θ2·4n+(4n−1), α0, θ3·4n+1, . . . , θ3·4n+(4n−1).

Next, we look at all the angles after the first 4n − 1 and verify that (2) is valid. We break the analysis into
six straightforward cases.

1. The first occurrence of α0: This is θ4n , and we have 4n = 22n, so that τ(4n) = 0. Thus, (2) is valid.

2. θ4n+1, . . . , θ4n+(4n−1): By the recursive algorithm, these are just the first 4n−1 angles repeated. Thus,
when 1 ≤ m ≤ 4n− 1, we must show that m and m+4n have the same highest power of 2 as a factor.
To this end, write m = 2p ·M, where M is odd. Then

m+ 4n = 2p ·M + 22n = 2p(M + 22n−p).

Now since m = 2p ·M < 4n = 22n, we must have p < 2n, so that 2n − p > 0 and 22n−p is even.
Thus M + 22n−p is odd, showing that p is also the highest power of 2 in m+ 4n. Again, (2) is valid.

3. The occurrence of α1: This is θ2·4n . We have 2 · 4n = 22n+1, so that τ(2 · 4n) = τ(22n+1) = 1, since
2n+ 1 is odd. So (2) is valid here as well.

4. θ2·4n+1, . . . , θ2·4n+(4n−1): We argue just as in Case 2, since in this case we may write

m+ 2 · 4n = 2p ·M + 2 · 22n = 2p(M + 2 · 22n−p).

5. The second occurrence of α0: This is θ3·4n . Since 3 · 4n = 3 · 22n, we have τ(3 · 4n) = τ(22n · 3) = 0
since 2n is even, thus verifying (2) in this case.

6. θ3·4n+1, . . . , θ3·4n+(4n−1): Again, we may argue as in Case 2. �

We note that it is not strictly necessary to create an iterative procedure to optimize the number of steps
drawn – a counter may be embedded in the recursive procedure, and the process may be stopped when the
desired number of steps are drawn. However, as I made this procedure available on my mathematics blog
[3], I wanted to find a way to make the coding as simple as possible – which meant creating a purely iterative
procedure rather than embedding an iterative procedure within a recursive one. Finally, we note that the idea
of looking at highest powers of two comes from creating an iterative algorithm to solve the Tower of Hanoi
puzzle, where similar ideas are encountered.

Koch-Like Fractal Images

295



Bounded vs. Unbounded

Once a length for the forward move F is given, the fractal algorithm may produce unbounded curves (such
as the Koch curve), or bounded curves (such as in Figure 3). How may this be determined?

A complete answer to this question has yet to be determined. For the purpose of this paper, we address
one aspect of this question which is helpful in finding bounded curves. Specifically, if a curve is retraced
over again in exactly the same way, it must eventually return to the origin in its original orientation. Thus,
there must be some N for which

N∑
k=1

θk (3)

is a multiple of 360◦. So, if e(N) denotes the number of the θk which are α0 and o(N) denotes the number
of the θk which are α1, the sum in (3) is simply

e(N)α0 + o(N)α1. (4)

To get a handle on e(N) and o(N), let νp(N) denote how many numbers k, where 1 ≤ k ≤ N, are such that
the highest power of 2 in k is p. Then we have

e(N) =
∑
p even

νp(N), o(N) =
∑
p odd

νp(N). (5)

Note that the sums may be taken over all p, since for p large enough, we have νp(N) = 0. We now show
that:
Proposition: For p ≥ 0 and N > 0, we have

νp(N) =

⌊
N + 2p

2p+1

⌋
. (6)

The proof is fairly straightforward. We note that (6) is equivalent to νp(N) being that integer satisfying

N + 2p

2p+1
− 1 < νp(N) ≤ N + 2p

2p+1
.

Multiplying through by 2p+1 and rearranging terms results in

2p(2 νp(N)− 1) ≤ N < 2p(2 νp(N) + 1). (7)

The idea of the proof may be seen by looking at a specific example, say with p = 2 and N = 42. Note
that ν2(42) = 5 counts the odd multiples of 22 = 4 less than or equal to 42 (since any even multiple would
increase the power of 2): 4, 12, 20, 28, and 36. Also note that these odd multiples are spaced 8 = 23 apart.
So the largest of these must not exceed 42 : 4 + (5− 1) · 8 ≤ 42. In the general case, we have

2p + (νp(N)− 1) · 2p+1 ≤ N,

which is equivalent to the left inequality in (7).
Finally, we note that 42 must be less than the next odd multiple of 4 greater than 36 : 42 < 4+5·8 = 44.

Generalizing, we have
N < 2p + νp(N) · 2p+1,

which is equivalent to the right inequality in (7). �

Matsko

296



Now it is straightforward to find fractal curves which have the potential to close up: use (4) and (5) to
check, given values of α0 and α1, whether there is some N (less than some given maximum) such that (3)
is a multiple of 360. I used Mathematica to do this, and found the parameters for the image in Figure 3 this
way.

So even though the analysis of this algorithm is yet incomplete, the results of the last two sections
provide mathematical tools which enable us to find many thousands of potential curves to work with.

Artisitic Considerations

In creating digital art, I frequently find that there is a tension between abstractness and aesthetics. A fractal
curve (as discussed in this paper) is an abstract object – a polygonal curve with each segment being the same
length. At its simplest, we might simply render such a curve as a series of thin, black line segments on a
white background.

To qualify as “mathematical” art, I think some faithfulness to the abstract mathematical object should
be maintained. To this end, I decided to work within the following self-imposed constraints:

1. Use only four colors for the line segments. This is faithful to the motif F + α0 F + α1 F + α0 F :
each occurrence of F is assigned a given color, so that the algorithm “creates” a color texture by virtue
of its recursive structure. Figure 3 is a good example of how a layering effect (concentric circles) may
be created by judiciously choosing the four colors to be similar in pairs.

2. Use a single color for the background. It should be evident by looking at Figures 2 and 3 that the choice
of background color substantially affects the final image.

3. Keep line widths constant. However, a slight liberty it taken, as seen in Figure 4. Here, the fluorescent
effect is created by overlaying several copies of the same curve. The thickness of the lines in each copy
is the same – but the darker blue copies are drawn with thicker lines, which get progressively thinner
as the blue becomes brighter.

Figure 4 : Angles of α0 = 90 and α1 = 150.

Color choices are critical, and are sometimes suggested by the image itself. For example, the image
in Figure 5 reminded me of pine needles, and so my color palette reflected this. Also note that this is an

Koch-Like Fractal Images

297



excerpt from a larger image. Selecting a region to use for the final images involves considerations of figure
and ground.

Figure 5 : Angles of α0 = 11 and α1 = 185.

L-Systems

The algorithm described in [2] is an example of general class of algorithms called L-systems, after theoretical
biologist Aristid Lindenmayer, who first described them in 1968 [4]. I first became interested in L-systems
while encountering the wonderful book The Algorithmic Beauty of Plants [2].

The Koch curve is a relatively simple example of an L-system. Not only is the recursive description
fairly brief, we have also assumed that each occurrence of F draws a segment of the same length, and that the
first and third of the three angles required are equal. We cannot offer a full discussion here, but will present
a few examples of what happens with more complex systems.

Figure 6 : Lengths in the ratios 2 : 2 : 1 : 2.

Matsko

298



If we alter just one length in the image in Figure 4 – making the third occurrence of F half as long as the
others – we obtain Figure 6. While there are certainly similarities between the two figures, it is not obvious
that they were created by the same algorithm except for the one change specified.

L-systems may also involve mutually recursive functions, such as one for describing the Sierpinksi
triangle [4]:

F→ +60 G + 300 F + 300 G + 60, G→ +300 F + 60 G + 60 F + 300.

Here, we begin with F, which mutually recursively calls G.

Figure 7 : Sierpinski triangle and variation.

In Figure 7, we see seven levels of this recursion creating the Sierpinksi triangle on the left. By modify-
ing the angles slightly – changing the 300◦ to 298.994◦ – we obtain the figure on the right of Figure 7, which
resembles a beetle. Still seven levels deep, there is much more interaction between parts of the curve with a
change of only about one-third of a percent in one of the angles. As the L-systems become more complex,
there is virtually infinite variation in what can be created.

Making Movies

In addition to creating individual images, movies may easily be created using the Processing platform. If
two fractal images have the same number of vertices, intermediate images may be created by linearly inter-
polating between the vertices of the initial and the final images. Additional effects may be created by also
performing a linear interpolation between background colors or colors of segments in the image.

However, interpolation is also possible if two fractal images do not have the same number of vertices.
In Figure 8 below, the final image has three times as many vertices as the initial image. In the first few screen
shots, the triplication of the initial image is easily seen. As the movie progresses, the final image takes shape.

The challenge in creating animations is selecting from the large number of special effects it is possible
to introduce. For the movie illustrated in Figure 8, special effort was made to make the development of the
images interesting from a geometrical point of view, and having this perspective dominate other concerns.

Koch-Like Fractal Images

299



Figure 8 : Screen shots from Processing.

Concluding Remark

It is hoped that these few examples illustrate the virtually infinite world of recursively generated fractal
images. The large number of parameters which may be modified – including the creation of entirely new
recursive algorithms – allows for an extensive range of images which may be produced. Rendering these
images in a way which emphasizes the inherent geometry requires careful use of computer-generated effects.

Acknowledgments

I would like to thank Thomas Biba for asking the right question, and Matthieu Pluntz for discovering the
image in Figure 4 and engaging in a lively email conversation about generating fractal images.

References

[1] Ibrahim, M., and Krawczyk, R., Exploring the Effect of Direction on Vector-Based Fractals, in
R. Sarhangi, ed., Proceedings of Bridges 2002: Mathematical Connections in Art, Music, and Science,
Bridges Conference, pp. 213–219.

[2] Lindenmayer, A., and Prusinkiewicz, P., The Algorithmic Beauty of Plants, Springer-Verlag, New York,
1990.

[3] Matsko, Vincent J., Creativity and Mathematics, 2016. http://www.cre8math.com (as of Jan. 31,
2016).

[4] Wikipedia: The Free Encyclopedia, L-system. https://en.wikipedia.org/wiki/L-system (as of
Jan. 31, 2016).

Matsko

300

http://www.cre8math.com
https://en.wikipedia.org/wiki/L-system

