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Abstract

We present explicit equations for three differergpmpings between the disk and the square. We therthese
smooth and invertible mappings to convert the Roiaaisk into a square. In doing so, we come up titee
square models of the hyperbolic plane. Althoughs¢hkyperbolic square models probably have limitsed i
mathematics, we argue that they have artistic meriparticular, we discuss their use for aesthésoalization of
infinite patterns within the confines of a squazgion.

TR
aﬁ‘ﬁif

%

L

NS
X&*;

o
3
2,
a
:5)-
2
8
>
=
A
o
2
_';"

3

- :FB

.%.Q
P8

1
3

; >
Lok o0 b T, SR L% e S BTN o £ K] 2 ’f.‘.,\?ﬂe{*\tﬁ‘"ﬂfﬁ.‘ ’V'(“

Figure 1. Square rndions of the Escher’s Circle Limitl#ff), Cifble Limit IV (center),
and Coxeter’s subdivided {6,4} tessellation (rigbtthe Poincaré disk
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Introduction

The Poincaré disk model of the hyperbolic plangrigbably the most popular model of hyperbolic
geometry. In fact, it served as the basis for fouM.C. Escher's “Circle Limit” masterpieces. The
Poincaré disk is a conformal model, which meanshifperbolic measure of angle in it is the samdsas i
Euclidean measure [2]. In other words, it does distort angles. It also has a curious property that
encases an infinite region within the confines dfcainded unit disc. This property is what origipall
inspired Escher to make his “Circle Limit” woodcutsthe late 1950’s. A few decades later, Douglas
Dunham pioneered the use of computers for creatypgrbolic art based on the Poincaré disk [2].

Most of the world's paintings are rectangular. Peogre much more accustomed to seeing
rectangular artwork than circular artwork. Thighie main motivation of this paper. For artisticsesas, it
is useful to have a model of the hyperbolic plaseaasquare. Also, when display space comes at a
premium, such as in rectangular computer screeis preferable to avoid circular shapes which db n
tile easily and are suboptimal in utilizing dispkarga.

As a matter of fact, Escher himself was interesteghcasing an infinite region of patterns withue t
confines of a square [9]. This is evidenced by“Biguare Limit” woodcut shown in Figure 9. We share
the same sentiment as Escher. We believe that yhadrof circular artwork based on the Poincaré dis
can be reinterpreted as a square. In this papeshalediscuss three different ways of doing this.
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Disc-to-Square Mappings

In 2014, Fong presented and analyzed differentfetgjuations [4] for mapping the disc to the squar
and vice versa. In this paper, we shall apply thmappings on the Poincaré disk to produce hyperboli
square regions. The three mappings used in thisrpa@ shown in Figure 3 along with forward and
inverse mapping equations. Note that each mappmingects the perimeter of the circle into the petane
of the square. This rim-to-rim behavior is impottamcreating viable hyperbolic square regions.

In order to illustrate the visual properties of thappings, we also included diagrams for a dish wit
a radial grid converted to a square. This appearh® left side of Figure 3. Similarly, on the riglide,
we included diagrams for a square grid converteldwcular disc.

It goes without saying that there are infinitelynypavays to map a circular disc to a square. For
example, there are algorithmic methods that iteeitioptimize on some criteria [10]. However, faist
paper, we only focus on three invertible mappimgd have explicit analytical equations.

Canonical Mapping Space The canonical space for the mappings presenteg isethe unit disc
centered at the origin with a square circumscriliinghis is shown in Figure 2. This unit disc isfitied
as the seD = {(u,v)| u? + v? < 1}. The square is defined as the $et [—1,1] x [-1,1]. This square
has a side of length 2. We shall denote (u,v) @siat in the interior of the unit disc and (x,y) the
corresponding point in the interior of the squdterahe mapping. The diagram in Figure 3 has équst
for mapping (u,v) to (x,y) and vice versa.

{(u, )| u?+v?* <1} 1 ) [-1,1] x [-1, 1]
range

-1 1 -1

(uv) (xy)

Figure 2: Canonical mapping space

Note that for the sake of brevity, we have not ledgut cases when there are divisions by zero in
the mapping equations. For these special casdsequsmte x=u, y=v and vice versa when there is an
unwanted division by zero in the equations. Tisisally happens when u=0 or v=0 or both.

It is important to mention here that the most ratévand appropriate mapping for the converting the
Poincaré disk to a square is tBehwarz-Christoffel mapping his is because the mapping is conformal
and, hence, a natural extension of the Poincakétdithe square. In other words, undistorted Eeelid
angles in the Poincaré disk remain intact on thesgafter using this mapping. In fact, all thetqrais in
Figure 1 are generated using the Schwarz-Christofé@ping. We shall denote this square mapping of
the Poincaré disk as tleenformal hyperbolic squard he two other mappings covered in this paper are
the FG-squircularand theelliptical grid mappings We will discuss them all in more detail later.

Hyperbolic Geometry and the Poincaré Disk

There is a long and storied history of non-Euclidgaometry that we will only gloss over here. Non-
Euclidean geometry arises from the negation of i#liscfifth postulate -- also known as the parallel
postulate. A modern formulation of this postulastes thatin a plane, given a line and a point not on it,
at most one line parallel to the given line cardimvn through the point”. This formulation is knows
Playfair's axiom Hyperbolic geometry arises when the axiom is tejavith the following statement “In
a plane, given a line and a point not on it, theme several lines parallel to the given line than be
drawn through the point”.
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(u,v) are circular disc coordinates
(x,y) are square coordinates

F is the Legendre elliptic integral of the 1st kind
cn is a Jacobi elliptic function
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Figure 3: Some mappings to convert a disc to a square amdwacsa
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Models of the Hyperbolic Plane Mathematicians have come up with many differemidets of the
hyperbolic plane to study hyperbolic geometry. hinest well-known and useful models are the Poincaré
disk, the Poincaré half-plane, the Beltrami-Kleiskgdand the Weierstrass-Minkowski hyperboloid mode
These different models are usually taught in undelgate classes of non-Euclidean geometry. In this
paper, we are mainly interested in the Poincarié liksause it is a conformal model embedded asta fin
disk on the Euclidean plane. We would, howevek tix mention that there are many other exotic nsodel
of the hyperbolic plane. These include the Gansehadtie hemisphere model, and the Bulatov band
model [1]. Moreover, we intend to introduce threerenexotic models of the hyperbolic plane by magpin
the Poincaré disk to a square.

Using the different mappings shown in Figure 3,c@@ convert the Poincaré disk into hyperbolic
squares. Figure 4 shows a negation of Playfairienaon the Poincaré disk and corresponding square
mappings. The vertical line at the center stands fgiven line and the small red dot stands fooiatpot
on the given line. The colored curves are hypecblolies parallel to the given line. We also incldde
cyan-colored hyperbolic circle on the left sideiltastrate the distortion effects of the mappings o
circles. Note that the hyperbolic circle on a Panécdisk is represented by a Euclidean circle.

We make no attempts at proving that these squampimgs are equiconsistent models of the
hyperbolic plane. Instead, we would like to mentibat these mappings are continuous and invertible.
Hence they map every point in the hyperbolic plem@ unique point in the square and vice versa. In
other words, we believe that the bijective naturthe mappings provides a justification for the ralsd

Poincare Schwarz- F&- elliptical
disk Christoffel squircular grid
mapping mapping mapping
‘\ hyperbolic / N /i
circle [ \

Figure 4: Playfair's axiom on the Poincaré disk and hyperbaguare regions

Regular Tilings of the Hyperbolic Plane Unlike the Euclidean plane, there are an infimitenber of
ways to tile the hyperbolic plane using regularygohs. In fact, if (p-2)(g-2) > 4, it is possible get a
regular tessellation of the hyperbolic plane cdmsisof p-sided polygons where g of which meetathe
vertex [2]. This type of tessellation is known agpay} tiling in the Schlafli symbol notation. Fige 5
shows some examples of regular tiling on the conédthyperbolic square

{54}

{83}

Figure 5: Some regular tilings of the conformal hyperbolicaie
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More Details on the Mappings

Schwarz-Christoffel Mapping. One of the most celebrated results iff &é8ntury complex analysis is the
Riemann mapping theorem. It states that for evenply connected subset of the complex plane, there
exists a conformal map between this region andgsan unit disk. Moreover, it states that this comial
map is unique if we fix a point and the orientatajrthe mapping.

In theory, the Riemann mapping theorem is nice, ibig only an existence theorem. It does not
specify how to find the conformal mapping. The tiexportant breakthrough came with the works of
Hermann Schwarz and Elwin Christoffel. In the 18&shwarz and Christoffel independently developed
a formula for a conformal mapping between the dist and a simple polygonal region in the complex
plane. The formula is complicated and involvesraegral in the complex plane. Furthermore, for most
polygons, the integral can only be approximated evigally. Fortunately, for the special case of the
square, the Schwarz-Christoffel formula can be eceduto an explicit analytical expression involving
elliptic integrals and elliptic functions [5]. Meanhile, these special functions can be computedyeasi
using some well-established fast and robust alyoist
A Fundamental Conformal Map. Without getting much into the mathematical undempigs of the
Schwarz-Christoffel mapping, we show in the figbledow a fundamental conformal map between the
circular disc and the square in the complex plar@s mapping can be derived by simplifying the
Schwarz-Christoffel integral for the square anchgdihe doubly-periodic nature of the Jacobi eltipti
functioncn on the complex plane. In essence, one could mergy @oint inside the unit disc to a square
region conformally by just an evaluation of the gdex-valued Jacobi elliptic functiorn(z

Furthermore, the inverse of the mapping can beutzked using the Legendre elliptic integial
w=u+vVvi 21 =x,+y,l

1
7

()

. g
(-1,0)

1
(0,-1) wo= Cn(Zpﬁ)

K, ~ 1.854

(0,0)

(-2Ke, 0)

('Ke"Ke)
Figure 6: A conformal map between the disc and square icongplex plane

Canonical Alignment. The main drawback of the diagram on the complexelé that x and y
coordinates are not in our canonical mapping spiicgire 6 shows a square with corner coordinates in
terms of a constant Kinstead of the +1 that we desire. Moreover, theasg is tilted by 45and off-
center from the origin. In order to get the mappimto our canonical mapping space, we need to do a
series of affine transformations on the squares Trtludes centering the square to the origin @atirg

it down to have a side length value of 2. In orgedo this, we introduce a rotational factor%f for the

45° tilt as well as K offsets and scale factors. This is exactly whaipleas in the explicit equations that
are provided in Figure 3. Basically, we have tlisanized mapping equation in the complex plane

_ 1 <K1+i K 1) h —u+vi and z=x+yi
w= 7 cn(Ke——2—Ke, where w=u+vi and z=x+yi
dits i 1_iF( —1(1+i ) 1) +1-i

= cos ,— -
and 1ts Inverse VA —Ke \/7 w NG l
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Several people have previously used the SchwaristGfiel mapping in conjunction with the
Poincaré disk [6][8]. However, we believe that we the first to provide explicit formulas for comtiag
the Poincaré disk to hyperbolic squares. Moreacsiage we focused our attention solely on the square
we are also able to provide inverse equationgi@mapping.

Fernandez-Guasti Squircle. In 1992, Manuel Fernandez-Guasti [3] introducedlgebraic equation for
representing an intermediate shape between the einc the square. His equation included a paemet
s that specifies the squareness of the shape. Figuilistrates the shape at varying valuessof

FG-squircle equation: /’_\\ h
N\ =

2 2 S22 .92 .2
xX*+yt - xtyt=r

et Q) - I©

s=01 | $s=0.5 | s=0.8 $=0.95

\ /\ / \ /
_ . /' \ AW D

Figure 7: Fernandez-Guasti squircle (left) and its use irppiag the disc to a square (right)

The parametes can have any value between 0 and 1. WhenO, the equation produces a circle
with radiusr. Whens = 1, the equation produces a square with a sidgtheof 2r. In between, the
equation produces a smooth curve that resemblds dhatpes. The two other disc-to-square mappings
covered in this paper are based on the FernandagtiGuyjuircle.

FG-Squircular Mapping. In 2014, Fong used the Fernandez-Guasti squivademe up with a mapping
between the circular disc and the square [4]. Hegded the mapping with two key constraints. Tt fi
constraint is that circular contours inside theiimr of the disc be mapped to squircular continsgle
the square. This is illustrated in right diagramrFegure 7. The second constraint for the mapping is
radial constraint. This means that points insigedisc will only move radially from the center chgithe
mapping. This is evident by observing the radia gnapped to a square in Figure 3.
Elliptical Grid Mapping . In 2005, Philip Nowell introduced a square tocdimmapping that converts
horizontal and vertical lines in the square tgpéitial arcs inside a circular region. In effecistapping
turns a regular rectangular grid into a regularvilimear grid consisting of elliptical arcs. Nowell
provided a mathematical derivation of his mappimdnis blog [7]. In 2014, Fong analyzed the mapping
and came up with an inverse equation [4]. Thisatiffely made the mapping a bijection between tise di
and the square. Fong also showed that the mappingeds circular contours inside the disc to
Fernandez-Guasti squircles inside the square [4].
Distortion Comparisons. Figure 8 shows a side-by-side comparison oftineetdisc-to-square mappings
applied to Escher’'s “Circle Limit I". The two norpeformal mappings are not as pretty as Schwarz-
Christoffel mapping when applied to hyperbolic ditis is most evident near the four corners whieeg t
appear muddled and fuzzy. Qualitatively, these twappings produce patterns that look very similat, b
they are not the same. One is a radial map andttier is not. Nonetheless, the differences between
them are quite subtle and may require a bit ofrgng in order to see.

Even though the Schwarz-Christoffel mapping dodsdistort angles, it does distort area. This is
quite evident near the four corners of the squdrerevthere is significant size distortion when camapl
to its circular image. The square grid mappingiguFe 3 illustrates this distortion quite well. Maehile,
although the two other mappings are not conforthaly make up for it by having less size distortiion
the four corners. As a matter of fact, sometimesngaless size distortion is more desirable thavirita
less angular distortion. For example, in Figure \w@,show circular mappings of the Monopoly™ board
game. The two other non-conformal mappings actublye much more legible corners than the
Schwarz-Christoffel mapping.

184



The Conformal Hyperbolic Square and lts Ik

FG-squircular

ttdeof,
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Software Implementation All of the hyperbolic square figures shown irsthiaper were generated using
software written in C++. The software implementatiovolves generating hyperbolic points, lines, and
polygons inside the Poincaré disk. For this, welwgorithms devised by Dunham [2]. After calcudati

of vector art coordinates inside the Poincaré digkused the disc-to-square mappings providedguorEi

3 to get coordinates inside the square for rendehteanwhile, Figures 9 and 10 were generated wsing
image processing computer program that we wrot€+#r. The program reads and writes bitmapped
image files and applies the mapping equations dovicual pixels. The built-in complex number class
library in C++ was very useful in our software implentation. We also found the GNU Scientific
Library (GSL) useful for the numerical computatiminspecial functions such as the incomplete Legendr
elliptic integral of the T kind and Jacobi elliptic functions.

Other Artistic Uses

Although we put emphasis on using the disc-to-sguaappings to convert the Poincaré disk to
hyperbolic squares, we would like to mention thas is not the only use for these mappings. One can
certainly use these mappings to convert other akiftom a disc to square and vice versa. For exampl
since the mappings are all invertible, we can cdraguare diagrams into circular ones. This istlated

in Figure 9 where Escher’s “Square Limit” woodcsitcdonverted into a circular disc via the Schwarz-
Christoffel mapping. We also show other exampleBEigure 10 which includes a rendition of Hilbert's
space-filling curve inside a circular disk. We hameany more example results available in our
http://squircular.blogspot.com website.

edetuRt
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The M.C. Escher Company - The Netherlands.
All rights reserved. www.mcescher.com

All M.C. Escher works © 2016
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Figure 9: Escher’s Square Limit (1964) converted to a circaisc
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Schwary - Ohnistoffel FQ-squi revlar elliptical grid

Figure 10: Circular renditions of Hilbert’s space-filling cuev(top)
and the Monopoly¥ board game by Hasbfobottom)

Summary and Conclusion

We presented three explicit mappings for convertiirgular artwork to squares and vice versa. For
hyperbolic art, the Schwarz-Christoffel mappingdaroes the best results because of its conformatenat
This is not necessarily the case for other typearork because the Schwarz-Christoffel mapping ha
considerable size distortions near the four cortners
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