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Abstract 
 

An analysis of a 15th century Mamluk marble mosaic pattern reveals an interesting construction method. Almost 

invisible cut-lines prove there was an underlying pattern upon which the artisan designed the visible pattern. This 

construction method allowed the artisan to physically strengthen the work and make its marble tiles more stable. 

We identify the underlying pattern and generate other patterns using the same underlying tiles. We conclude with 

an exhaustive description of all such patterns. 

 

 

Introduction 

 
The city of Cairo (from Arabic al-Qahira, “the strong”) was the capital of the Mamluk Sultanate, the 

greatest Islamic empire of the later Middle Ages. Arising from the weakening of the Ayyubid Dynasty in 

Egypt and Syria in 1250, the Mamluks (Arabic for “owned slaves”), soldier-slaves of Circassian origin, 

ruled large areas in the Middle East until the Ottoman conquest of Egypt in 1517. 

 

The great wealth of the Mamluks, generated by trade of spices and silk, allowed generous patronage of 

Mamluk artists, which integrated influences from all parts of the Islamic world at that time, as well as 

refugees from East and West. Some of the Mamluk architectural principles are still visible today, mainly 

in Cairo. 

 

Figure 1 shows a rich and lively pattern from the first half of the 15
th
 century that probably adorned the 

lower register of a wall of an unknown Cairo building, and now presented at the New York Metropolitan 

Museum of Art. The polychrome marble mosaic is a classic example of the work of the rassamun (Arabic 

for “painters”), designers whose Cairo-based workshops generated and distributed geometric patterns 

made of various materials for a large variety of purposes. Marble was not common in the areas under 

Mamluk control, and was acquired mostly through looting. The marble pieces unsuitable for architectural 

use were used, among other artistic uses, to create inlays such as this [1]. In reality the pattern is rotated 

by 90°, but for better readability of the paper we present its rotated landscape version. 

 

Constructing the Pattern 
 

We begin our analysis of the pattern by identifying the pattern’s generating polygons, or using the 

terminology in [2], the pattern’s basic and practical tile. We recall that the basic tile of a pattern is the 

smallest polygon with which we can regenerate the whole pattern using translations, rotations and 

reflections (fundamental domain); the practical tile is the smallest rectangular tile with that property.  
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The pattern exhibits two perpendicular reflection axes, and centers of two-fold rotational symmetry on 

and off these axes, and so it belongs to the wallpaper group c2mm [3]. Hence the basic tile of the pattern 

is the triangle in Figure 2. Using the techniques described in [2] we find the rectangular practical polygon 

of the pattern, also in Figure 2. We note that the physical frame of the pattern lies on the reflection axis, 

so the grid formed by the practical tiles fits perfectly. This means that if the artisan were to create the 

pattern using the practical tiles, they would fit perfectly in the frame, without needing to break some of 

them. 

 

A close inspection of the pattern shows that this was not the method the artisan used to lay the pattern. 

Consider Figure 3, which shows a small fraction of the pattern. Note the tiny cut-lines that run through 

the marble shapes; they clearly form a near-regular pentagon. As it turns, these pentagons, with the same 

colorful design drawn upon them, reappear across the pattern, alongside two other shapes – a trapezoid 

and a regular decagon (incidentally, all three tiles meet at the top left corner of the pentagon in Figure 3). 

The three underlying tiles are given in Figure 4. Moreover, the frame of the pattern lies on some of the 

underlying tiles’ edges. This gives a good guess about the artisan’s method – he created several tiles of 

each of the three types, and connected them together. This methodology has been previously proved to 

exist in different times and places in Islamic art, most notably in the use of Girih tiles [4]. It bears 

mentioning that similarly to Girih tiles, these tiles are also constructible with a straightedge and a 

compass. 

 

Looking at Figure 3 closely, we see that in fact the pentagon formed by the cut-lines is not closed, but 

rather, small fractions of edges near its top left and right corners are missing (circled). It seems that the 

cream colored strapwork strangely disrupted the cut-lines. Looking at the whole pattern again, it can be 

seen that it was not a one-time mistake, but a rule – every such pentagon was missing parts of its edges 

near its top left and right corners (without ignoring the tile’s rotation, of course). A similar observation 

can be made about the other two tiles – the decagon and the trapezoid – and in fact, the missing edge on 

one tile corresponded to a missing edge on its neighboring tile. This shows that the strapwork did not 

interrupt the underlying tiles at the same places, but rather, it was the artisan who used the strapwork that 

ran from one tile to the other in order to connect the tiles together. In fact, it can be safely assumed that 

the artisan created the tiles without the connecting strapwork, and then created separately the strapwork to 

keep the tiles tight, perhaps even without glue. 

 
 

Figure 1: 15
th
 century Mamluk wall panel, made of polychrome marble 

(rotated). On view in Gallery 454, Metropolitan Museum of Art, New 

York City, USA. Accession Number 1970.327.8. 

Figure 2: The pattern’s basic 

tile (top) and practical tile 

(bottom). 
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The reconstruction of the pattern, showing just its underlying tiles, is given in Figure 5. For the sake of 

simplicity and ease of description, from this point on we will ignore the connecting strapwork (red). We 

will also ignore the design (decoration) of each underlying tile, and may refer to them by their colors in 

Figure 5 – yellow for the decagon tile, blue for the trapezoidal tile, and green for the near-regular 

pentagonal tile.  

 

Generating Other Patterns 
 

We shall now look into other possible combinations of the same tiles that yield coherent patterns. 

Looking at the edges’ lengths given in Figure 4, we observe that the blue and the green tiles have both 

edges of unique length ( 
 

 
   √   and 

 

 
   √  , respectively), and we conclude that on the other side 

of that edge we must have another copy of the same tile, so our tiles de-facto are those in Figure 6
1
. 

 

                                                 
1
 Fortunately, ignoring connecting strapwork, the tiles exhibit reflection symmetry with respect to the bisection of 

the unique edge, so we can either rotate or reflect the second tile and get the same double-tile. 

  
Figure 3: A close-up on a part of the pattern. Note the nearly 

invisible cut lines (parallel and close to the yellow lines); they 

form an almost-regular pentagon. Some parts of the 

pentagon’s edges interrupted by the cream colored strapwork 

(circled). 

Figure 4: The pattern’s underlying tiles. 

The pentagonal tile is the one pictured in 

Figure 3. The edges of length 1 were 

chosen without loss of generality; the rest 

follow logically from the tiles’ geometry. 

 
 

Figure 5: Reconstruction of the pattern, showing just the underlying 

pattern and the connecting strapwork (red). 

 

Figure 6: The underlying tiles with 

their inevitable neighbors. 
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We note that the green double-tile has two “pockets”, each made of two edges of length 1; since putting 

any of the green or blue double-tiles’ edges of length 1 next to them results in a 36° gap, which isn’t 

realizable with these double-tiles, we conclude that we must put a yellow decagon in each of these 

pockets. A similar argument proves that each of the blue double-tiles’ edges of length 1 must neighbor a 

yellow decagon, and that there cannot be two adjacent blue tiles around a yellow decagon. In addition, 

there cannot be two neighboring yellow tiles. Some of these impossible configurations are given in Figure 

7. 

 

Our key observation when trying to index all possible patterns with these tiles is counting the number of 

blue neighbors a yellow decagon has. Since a decagon has ten edges, and each green double-tile uses two 

of them, we conclude that the number of blue neighbors must be even. Since between any two blue 

double-tiles we must have at least one green double-tile, we infer that each yellow decagon must have 

either 0 or 2 blue neighbors. 

 

We shall start with a yellow tile with no blue neighbors. Since no yellow neighbors are allowed either, we 

must surround the decagon with green tiles (Figure 8.A). Following the first rule we mentioned, we must 

place yellow tiles in each of the five tiles’ “pockets”; it can be easily seen that only blue tiles fit in 

between these yellow tiles, and so we get Figure 8.B. We cannot put a blue or a yellow tile next to the 

freshly placed blue tiles, so we must put green tiles there to get Figure 8.C. Applying the same rules over 

and over results in Figure 8.D, which can be extended radially ad infinitum, to create a pattern with five-

fold rotational symmetry. 

 

Considering a yellow tile with two blue neighbors, we have two options – either they are one green tile 

apart (we will refer to this combination of type A), or two (type B). In a similar fashion to the previous 

case, we can extrapolate these initial combinations further, as can be seen in Figure 9. It is noted that 

while the type B configuration is finite, type A configuration extends infinitely in one direction; however, 

if we are to avoid a decagon with zero blue neighbors (so as to find patterns different from the five-fold 

one we found above), we must extend it ad infinitum in both directions. 

 

In order to simplify the discussion, let us now consider the skeleton of such a pattern, i.e. mark the centers 

of the yellow decagons, and connect two of them with a line if they are neighbors via a blue tile. We shall 

narrow the discussion to tilings of the plane. Apart from the aforementioned five-fold rotational symmetry 

pattern, we can use just decagons of type B; this results in the original Mamluk pattern. Otherwise, we are 

forced to accept at least one decagon of type A, which forces as to accept an infinite row (in both 

directions) of type A decagons. Using combinations of type A and type B tiles we are able to create any 

  
Figure 7: Impossible tile matching. No tiles 

fit in the 36° and 72° gaps. 

 

Figure 8: Construction of a 5-fold pattern. 
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zig-zag pattern with edges lengths as we wish and 108° angles. This gives a pattern repetitive in at least 

one direction; if there is only one direction, we may discuss the pattern’s frieze group [5]. Normally a 

general pattern’s frieze group is p1; careful selection of edges lengths and turn points can result in groups 

p11m and p2, as we can modify the edge lengths as to get additional symmetries apart from the obvious 

translational (reflection and glide symmetry in p11m and rotational symmetry in p2). 

 

Next we consider the more interesting case of patterns with two independent repetition vectors. It first 

implies that the lengths of the edges in the zig-zag pattern are cycled; let us denote the smallest series 

upon which the edges lengths are cycled with the vector  ⃗            . For the sake of simplicity we 

assume that   is even, so that when cycling through the vector we maintain the same directions. An 

example of our notation is given in Figure 10. 

 

If we impose no condition on the vector  ⃗  we expect the pattern to exhibit only translational symmetry, 

and so its wallpaper group is the simplest p1. However, if we require that  ⃗ ’s coordinates be symmetrical, 

i.e.,       ⁄    for all  , then the resulting pattern will exhibit reflection symmetry as well, and so the 

resulting wallpaper group is pm. If we require that all coordinates be constant we also achieve rotational 

symmetry, and so the wallpaper group is p2mg. Alongside the original Mamluk pattern, whose wallpaper 

group is c2mm, these are the only wallpaper groups that may be achieved using these underlying tiles. 

Summary 
 

By examining nearly invisible cut-lines of a Mamluk marble pattern from the 15
th
 century, we concluded 

that there is an underlying pattern, whose tiles the artisan decorated and glued together using strapwork as 

connectors. Despite the different time and place, this approach is similar to the approach seen in several 

Topkapı Scroll patterns [6], in which one can see the underlying Girih tiles in thin red ink. 

 

Using the underlying tiles, which were the artisan’s building blocks, we explored all possible tilings of 

the plane. We found one pattern with five-fold rotational symmetry, and a rich family of patterns that 

exhibit translational symmetry in two independent vectors. The possible wallpaper groups of these 

patterns were identified. 

 

Since the mathematical features of these tiles have been studied exhaustively in this paper, it is suggested 

that further research should focus on the historical context of the pattern. One question that immediately 

 

 

Figure 9: Decagonal tiles 

configurations of types A and B. 

 

Figure 10: Skeleton, underlying tiles, and decorated tile of a zig-zag 

pattern with   ⃗            . 
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arises is why the artisan used these underlying tiles; it may be interesting to investigate whether other 

copies of this pattern, or different patterns using the same underlying tiles, were made near this one. It 

may also be interesting to look at other patterns from the same time and place and see if they hide an 

underlying pattern too; and if they do, what is the nature of these underlying patterns. 

 

Another idea that may be worth studying is the decoration of the tiles. It can be seen that because both the 

blue and green tiles have similar decoration and a strong motif (five pointed star), when looking at the 

finished work they are almost indistinguishable, and in fact if we look at the decorated pattern of the five-

fold pattern we have found (Figure 11, adaptation of Figure 8), the viewer is easily misled into thinking 

the pattern exhibits translational symmetry, which is obviously forbidden because of the 5-fold rotational 

symmetry. Such patterns have lately received some academic attention [7], and so this pattern may 

suggest a novel approach to these types of patterns. 
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Figure 11: The decorated five-fold symmetry pattern (adaptation of Figure 8). 
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