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Abstract 
 

Turing patterns, a kind of pattern that forms in nature as the result of reaction-diffusion processes, may be generated 

in Photoshop (or other image editing tools) by repeatedly blurring and sharpening a seed image. This paper explains 

mathematically why these image processing steps fit a type of reaction-diffusion model and describes how the author 

uses Photoshop Turing patterns as a starting point for abstract acrylic paintings. 

 

 

Introduction 

 

In 1952, Alan Turing proposed that stable spatial patterns may form in systems where two or more 

chemicals (“morphogens”) react with each other while diffusing through a substrate at differing 

rates. [1] One simple way to generate graphic designs that resemble these “Turing patterns” is to 

repeatedly blur and sharpen a seed image with an image editing tool such as Adobe® Photoshop®. 

If the parameters of these operations are chosen appropriately, the image will morph into the 

characteristic Turing pattern. In this paper I will first describe the generic model for a reaction-

diffusion (RD) system. Then, I will analyze the blur-sharpen technique in terms of image 

processing mathematics to show that it fits the generic model of and has the necessary 

characteristics of pattern-producing RD systems: short-range enhancement and long-range 

inhibition. Finally, I will briefly describe how I have used Turing patterns in my art. 

 

 

Image Filtering and Reaction-Diffusion 

 

Technique. Start with a grayscale seed image in Photoshop (or 

other image editor; almost any grayscale image will work). 

Apply the Gaussian Blur filter with a radius of, say, five pixels. 

Then, apply the Unsharp Mask filter with an amount of 100%, 

a radius of ten pixels, and a threshold of 0. Repeat the blurring 

and sharpening over and over again (macros are very helpful 

here) and the image will eventually morph into a Turing pattern 

like that shown in Figure 1. 

  

Reaction-Diffusion Models. Our approach will be to first 

examine the generic model for reaction-diffusion systems and 

then to show that our Photoshop technique is mathematically 

consistent with that model. Figure 1: Turing Pattern 
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 In order for stable Turing-style patterns to appear in an RD system, several conditions must 

hold. First, the morphogens must spread throughout the substrate according to the laws of 

diffusion: from greater to lower concentration at a rate proportional to both the gradient of the 

concentration and the diffusivity of the substance. [1] Second, there must be short-range positive 

feedback and long-range inhibition. [2] [3] Typically, RD systems of two substances are modeled 

as two partial differential equations, each comprised of a diffusion term and a reaction term: 

𝜕𝑢

𝜕𝑡
= 𝐷𝑢∇2𝑢(𝑥, 𝑦) + 𝑓(𝑢, 𝑣),         

𝜕𝑣

𝜕𝑡
= 𝐷𝑣∇2𝑣(𝑥, 𝑦) + 𝑔(𝑢, 𝑣)   

where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are the concentrations of two substances; 𝐷𝑢 and 𝐷𝑣  are diffusion 

coefficients; ∇2 is the Laplace operator that accounts for changes in the gradient of the 

concentration; and 𝑓 and 𝑔 are nonlinear functions capturing reactions between the chemicals. [4] 

 

Mathematics of Image Filtering. A grayscale image can be described as a function 𝐼(𝑥, 𝑦) that 

returns the value of the image at pixel location (𝑥, 𝑦). Our first step, Gaussian Blur, is implemented 

by convolving a Gaussian kernel with the image so that each pixel in the original image becomes 

a weighted sum of its own value and the values of nearby pixels. Let 𝐼0 be our initial seed image 

and let 𝐺𝜎𝑏𝑙𝑢𝑟
 be a Gaussian kernel with standard deviation 𝜎𝑏𝑙𝑢𝑟 (roughly equivalent to the 

Photoshop radius parameter). To blur the image: 

𝐼𝑏𝑙𝑢𝑟(𝑥, 𝑦) = 𝐺𝜎𝑏𝑙𝑢𝑟
⋆ 𝐼0(𝑥, 𝑦) 

Unsharp Masking is a technique for sharpening an image by accentuating contrast along edges: a 

“mask” is created by subtracting a blurred copy of the image from the original. This mask is then 

added back to the original image (often multiplied by a weight factor, which is ignored here for 

readability). [5] With a second Gaussian kernel, 𝐺𝜎𝑢𝑠𝑚
, we are able to create a mask 𝑚 to sharpen 

the blurred image 𝐼𝑏𝑙𝑢𝑟: 

𝑚(𝑥, 𝑦) =  𝐼𝑏𝑙𝑢𝑟(𝑥, 𝑦) − 𝐺𝜎𝑢𝑠𝑚
⋆ 𝐼𝑏𝑙𝑢𝑟(𝑥, 𝑦) = 𝐺𝜎𝑏𝑙𝑢𝑟

⋆ 𝐼0(𝑥, 𝑦) − 𝐺𝜎𝑢𝑠𝑚
⋆ 𝐺𝜎𝑏𝑙𝑢𝑟

⋆ 𝐼0(𝑥, 𝑦). 

We add the mask back to our blurred image and rearrange terms to get the sharpened version:  

𝐼1(𝑥, 𝑦) = 𝐼𝑏𝑙𝑢𝑟(𝑥, 𝑦) + 𝑚(𝑥, 𝑦) 
= 𝐺𝜎𝑏𝑙𝑢𝑟

⋆ 𝐼0(𝑥, 𝑦) + 𝐺𝜎𝑏𝑙𝑢𝑟
⋆ 𝐼0(𝑥, 𝑦) − 𝐺𝜎𝑢𝑠𝑚

⋆ 𝐺𝜎𝑏𝑙𝑢𝑟
⋆ 𝐼0(𝑥, 𝑦)

= 2𝐺𝜎𝑏𝑙𝑢𝑟
⋆ 𝐼0(𝑥, 𝑦) − 𝐺𝜎𝑢𝑏

⋆ 𝐼0(𝑥, 𝑦) = (2𝐺𝜎𝑏𝑙𝑢𝑟
− 𝐺𝜎𝑢𝑏

) ⋆ 𝐼0(𝑥, 𝑦) 

 

where 𝐺𝜎𝑢𝑏
 is a new Gaussian that results from the convolution 

𝐺𝜎𝑢𝑠𝑚
⋆ 𝐺𝜎𝑏𝑙𝑢𝑟

 and where 𝜎𝑢𝑏 =  √𝜎𝑢𝑠𝑚
2 + 𝜎𝑏𝑙𝑢𝑟

2 . Thus, after one 

iteration of blurring and sharpening, we have a new image 𝐼1 which 

is the original image 𝐼0 convolved with a Difference of Gaussians 

(DoG) filter. Figure 2 shows a 2D profile of a typical DoG kernel 

that provides exactly the type of short-range activation and long-

range inhibition required for pattern formation in an RD system. [6] 

 

Putting It Together. The diffusion equation describes how the 

concentration of a substance 𝑢 changes in space over time by 

diffusion: 𝜕𝑢/𝜕𝑡 = 𝐷∇2𝑢. If you assume that 𝑢 is an image 

function where pixel values correspond to concentration, then one 

Figure 2: Difference of 

Gaussians (DoG) kernel 
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way to express the solution to this equation is as the convolution of the image with a Gaussian 

filter. [7] The convolution of an image with the DoG filter, then, is the difference of two solutions 

to two diffusion equations with unequal diffusion rates.  

 Comparing the generic reaction-diffusion model with our image filtering mathematics, we can 

consider 𝑢(𝑥, 𝑦) to be the image function, 𝐼(𝑥, 𝑦), yielding the concentration of “white” and 

𝑣(𝑥, 𝑦) to be the concentration of “black”, where 𝑣 is not stored directly but is implied as the 

graphical inverse of 𝑢, so that 𝑣 = 1 − 𝑢 and 𝜕𝑣/𝜕𝑡 = −𝜕𝑢/𝜕𝑡. Since our DoG filter is expressed 

as the difference of solutions to two diffusion equations, we see that 𝐷𝑢∇2𝑢(𝑥, 𝑦) captures the first 

diffusion equation and represents the blurring operation. The reaction term 𝑓(𝑢, 𝑣) captures the 

second diffusion that occurs via the blurred copy made during the unsharp mask as well as two 

built-in “reaction” components. First, an increase of one substance (“white”) automatically results 

in a decrease of the other (“black”) and vice versa. Second, reaction terms must have a mechanism 

to prevent unlimited growth of the activator and here Photoshop automatically crops the range of 

pixel values based upon the bit-depth of the image (e.g., 0-255 for an 8-bit image), preventing the 

“self-enhancement” (via sharpening) from increasing without bounds. Together, these factors 

make up the nonlinear reaction functions 𝑓 and 𝑔, and we can see now how applying Gaussian 

Blur followed by Unsharp Mask fits the generic model for a reaction-diffusion system. 

 

Examples. Figure 3 illustrates one iteration of applying our two filters, Gaussian Blur followed 

by Unsharp Mask, to an image composed of a white square on a black ground. Blurring mimics 

diffusion while sharpening causes both “self-enhancement” as well as long-range inhibition. 

 Figure 4 takes an initial seed image of random noise through 150 iterations of Gaussian 

Blurring (radius=5) and Unsharp Masking (radius=10, amount=100%). In each figure, the top row 

shows the image itself undergoing the changes while the bottom row plots the value of a row of 

pixels midway through the top image. 

 The choice of parameters for both blurring and sharpening will affect whether patterns form 

at all (blur too much and the system diffuses to gray), the speed at which patterns stabilize, as well 

as the wavelength of the resulting pattern. Some RD models have more complex reaction terms 

and the selection of initial parameters can drastically change the overall character of the patterns 

formed. The technique described here generates only one particular style of pattern. 

 

 

Figure 3: A white square undergoes 

one iteration of blur and sharpen 

Figure 4A white square undergoes 

Figure 4: An initial seed image of noise undergoes 

150 iterations of blur and sharpen 

Figure 4: An initial seed image of noise undergoes 
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 Turing Patterns for Artistic Ends 

 

For several years I have been using Turing patterns—mostly generated as described here—as the 

starting point in the design of many of my abstract acrylic paintings (Bridges artists have explored 

these patterns before; see [8]). They have a natural balance between positive and negative shapes 

and provide an optically dynamic framework upon which to paint brushstrokes of color. Although 

the patterns are mathematically based, 

there is quite a lot of room for artistry. The 

initial seed used to generate the pattern is 

important: sometimes random noise 

works, but often I start with a 

photographic image, a digital sketch, or a 

graphic design such as a tessellation. By 

working directly in Photoshop, I can 

tweak the reaction-diffusion process, 

directing things by applying additional 

filters (e.g., Twirl or Wave) or apply 

manual image editing before, during, or 

after the pattern has reached equilibrium. 

Finally, I find the link to Alan Turing 

meaningful as it establishes a connection 

between my present career as an artist to 

my previous one as a software engineer. 
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Figure 5: “Dynamism”, acrylic on canvas,  

30x40 inches, (c) 2012 Andrew Werth 
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