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Abstract
A proof without words is a style of proof that demonstrates a mathematical identity through the use of pictures instead
of text. In this paper, we discuss how to use fractal tilings to illustrate sums of geometric series.

Introduction

This paper explores the intersection between tilings and fractals, two mathematical topics having obvious
connections with artistic ideas, and geometric series, a mathematical idea that is completely abstract. The
use of tilings in art and architecture dates back to ancient civilizations, and examples from Sumerian, Greek,
Roman, Islamic, and Indian cultures abound [4]. With the advent of computer graphics in the 1970s, we
have come to understand that tiles can have fractal boundaries. Here, we use fractal tilings to illustrate sums
of geometric series.

A plane tiling is a countable family of closed topological disks which cover the plane without gaps
and overlapping only along their boundary. For example, a square can be used to tile the entire plane in a
checkerboard pattern. In this paper, we are interested in tiles that are themselves formed by some number
of smaller copies of themselves. Formally, a rep-k-tile T is a tile T that can be split into k congruent parts,
each of which is similar to T . For example, a square is a rep-4-tile because it can be divided into four smaller
squares. A pentagon is not a rep-n-tile because it cannot be divided into n smaller copies of itself for any
number n. Here, we are interested in tiles that have a fractal boundary, such as the rep-5-tile shown in Figure
1. While we won’t give a formal definition of a fractal, we note that fractals often exhibit self-similarity and
a detailed structure at all scales.

Figure 1 : A rep-5-tile

Greek mathematicians understood geometric series. Both Archimedes and Euclid were able to find the
sums of series such as

a+ ar + ar2 + ar3 + . . . (1)
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where a and r are real numbers. To find the formula for the sum, let sn = a + ar + ar2 + . . . + arn−1

denote the sum of the first n terms of the series. Multiplying both sides of the equation by r, we obtain
rsn = ar + ar2 + . . .+ arn. Subtracting the two equations gives

sn − rsn = (a+ ar + ar2 + . . .+ arn−1)− (ar + ar2 + . . .+ arn) = a(1− rn).

Simplifying, sn = a(1−rn)/(1−r). Then the sum of the series is the limit as n gets large, and limn→∞ sn =
a/(1 − r) if |r| < 1. Therefore, if |r| < 1, the sum of the geometric series in Equation 1 is a/(1 − r). For
example, the geometric series with r = 1/3 and a = 1,
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This result is not intuitive, though, as it relies on algebraic manipulations and a formal understanding
of limits. The purpose of this paper is the provide a visualization of sums of geometric series. These
types of proofs are commonly known as “proofs without words,” and there are entire books proving various
mathematical results using this technique [6, 7]. In fact, examples of visual proofs about geometric series
appear in [6, 7], but these examples all involve polygonal shapes; the innovation of this paper is to use tiles
with fractal boundaries.

The Mathematics

The construction of fractal rep-n-tiles is described in [1] and explained at a more basic level in [3]. It involves

finding an inverse of a linear transformation and an appropriate set of translations. Let M =

[
a b
c d

]
be an

invertible matrix where a, b, c, and d are integers. We say that M is expansive if all eigenvalues of M
have modulus greater than 1. The action of M on a region in the plane can be thought of as a sequence of
reflections, expansions, compressions, and shears. We also need a set of vectors that represent the necessary
translations of the smaller sub-tiles to each other. These vectors are formally known as a complete residue
system, and they consist of a complete set of coset representatives for the quotient group Z2/MZ2. The
following theorem from [1] ensures that we can construct rep-n-tiles from the matrix M and a complete
residue system.

Theorem 1. Let M be an expansive matrix with n = |det(M)|, and let {y1,y2, . . . ,yn} be a complete
residue system for M . Define fj(z) = yj +M−1z for j = 1...n. Then there is a unique rep-n-tile A which
is the union of n tiles Aj that have disjoint interiors and satisfy Aj = fj(A).

As an example, Figure 1 shows the rep-5-tile that results from the matrix M =

[
2 −1
1 2

]
, using the

complete residue system consisting of the vectors y1 =

[
1
0

]
, y2 =

[
0
0

]
, y3 =

[
−1
0

]
, y4 =

[
0
1

]
, and

y5 =

[
0
−1

]
. The sub-tiles Aj for j = 1...5 are labeled, and the entire tile A satisfies Aj = fj(A) for each j.

We can use the functions fj described in Theorem 1 to produce a coloring of the rep-n-tile A that
illustrates the sum of a geometric series. Any tile A constructed in such a manner has area n. Begin with tile
A1 = f1(A), which has area 1. The compositions f2(fj(A)) for j = 1...n divide the tile A2 into n smaller
tiles, each of area 1/n. Define A21 = f2(f1(A)). In general, let A2k1 = fk

2 (f1(A)), where fk denotes
function composition. By induction, the area of each region A2k1 is equal to 1/nk. Coloring only the set of
tiles {A1, A21, A221, . . .} results in a region that has area
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Figure 2 : Dark blue region has area 1 Figure 3 : Colored area is 1 +
1

5

Figure 4 : Colored area is 1 +
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Figure 5 : Colored area is 1 +
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by the formula for the sum of a geometric series. To illustrate the sum of an arbitrary geometric series, we
simply scale the original rep-n-tile by a factor of a. In this case, the area of each region A2k1 is equal to
a/nk, and we end up with a picture with colored area
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The tiles constructed in Theorem 1 may not be topological disks. While the procedure described above
will still result in an illustration of a geometric series, for the purposes of this paper it is easiest to visualize
the sum of the series when the tiles are topological disks. Necessary and sufficient conditions for ensuring
that rep-n-tiles tiles are topological disks can be found in [2]. We note that [5] explains other approaches to
constructing rep-n-tilings.

We provide two examples of visualizing the sum of a geometric series. Figures 2 through 5 illustrate
this process with the fractal rep-5-tile A with area 5 shown in Figure 1. Figure 2 shows the sub-tile A1 in
dark blue, which is a region with area 1. In Figure 3, we divide the sub-tile A2 into five smaller pieces and
use light blue to color the region A21, which has area 1/5. Figure 4 shows the region A221 with area 1/52
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Figure 6 : Colored area is 1 +
1
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colored green, and Figure 5 shows the region A2221 of area 1/53 in orange. Continuing this process, we see
by symmetry that we will eventually color 1/4 of the entire region A. That is, at each step, for every colored
fractal sub-tile there are four identical un-colored sub-tiles of the same shape. One of the uncolored ones is
still subject to further subdivision and eventually will get infinitely small. Since the original tile A has area
5, this illustrates that the sum of the geometric series
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For a second example, we only show the fourth step of the process. Figure 6 shows a fractal rep-3-tile
A with area 3. We color one sub-tile of area 1 dark blue, a sub-tile of area 1/3 light blue, a sub-tile of area
1/32 turquoise, and a sub-tile of area 1/33 orange. Continuing this process, we see that we will eventually
color 1/2 of the entire region A, illustrating that the sum of the geometric series
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