
A View of Music

Ellen Gethner∗, Shannon Steinmetz, Joseph Verbeke
University of Colorado Denver

College of Engineering and Applied Sciences
College of Arts and Media

June 11, 2015

Abstract

Inspired by the idea of synesthesia, or the intermingling of senses [10], we have developed an algorithm that
transforms raw sound into a pictographic representation using the physics of a signal. We apply our method
to music, the outcome of which is an animation that is not only synchronized with the music, but that mimics
aspects of the music itself. We discuss the results of our concept and an implementation, which includes
illustrations provided from a variety of music sources. As well, we provide our current parameterization
technique and discuss the internal behaviors. We close with a discussion of perception, consonance, and
dissonance, and a road-map for future work.

Introduction

We have begun a research effort that merges the scientific and engineering disciplines of Signal Processing,
Computer Animation and Mathematics with artistic creativity. For example, imagine a guitarist with the
instrument connected to his or her computer. As the musician plays s/he sees amazing patterns, shapes,
colors, and transitions that behave “congruently” to the music in real-time. Our research goal is to construct
a formulation (algorithms and software) capable of transforming the physical “shape” of a sound wave in to
a pictographic representation that captures a culturally neutral “perception” of the sound. In this paper, we
propose an algorithm and discuss our initial implementation for animating the behavior of sound and music.

Overview and Approach

This article is organized in the following way; first we identify a framework and application implementation
for processing raw signal information in an animation format. Second, we speak briefly about the basics of
a signal and demonstrate the specific approach we used for constructing a visual geometry based upon raw
digital sound data (in the time domain). We conclude with some examples of our results, a brief discussion
of consonance versus dissonance and finally our ongoing research, including how we intend to advance this
technology beyond the prototype experiments.

∗Research supported in part by a Simons Foundation Collaboration Grant for Mathematicians

Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture

289

Engineering the Animation

We constructed a sound processing framework using Microsoft .Net. The SoundBus processing framework
utilizes an animation plug-in system where each animation plug-in acts as an interface that can receive both
sound data messages and requests to render their current content. This allows us to experiment with different
algorithms without losing any previous work. We employ the Microsoft XNA .Net Framework along with C#
.Net and the NAudio sound processing package, which acts as the driver connecting our system to the sound
input device. Our implementation is capable of seamlessly processing raw pulse data from a raw MP3, .wav
file, or direct microphone input. There are several challenges when dealing with an attempt to synchronize
the visualization of sound and imagery. At 44K impulses per second, a 100Hz refresh and drawing one image
per frame the backlog grows arithmetically over time as β(t) = (44100)t+ (−10000)t. Even if we increase
to 100 images per frame after 10 seconds we have a backlog of β(10) = 341000 images to be drawn. As a
consequence we can never keep up with the sound that is playing in real-time without creating tremendous
clutter on screen. To alleviate this we abandon the one-to-one rasterization but not the one-to-one calculation.
Our framework provides a stream of sound information to an interface designed to process individual samples
at a time. Simultaneously there exists another interface mechanism which is called on a 30FPS interval to
refresh the computer display. In order to keep the different streams synchronized we employ a timer system
that calculates the current temporal backlog and flushes data to the graphics calculation. The processing
implementation system then chews off individual data blocks and continuously incorporates the data into a
set of running parameters for our geometric figures. At any given time, the interface is asked to render itself
in its current state. The end result is that we receive a fluid animation that generally mirrors the pace of the
sound and neither gets too far behind, nor too far ahead if reading from a sound file.

The Basics of Signals

Our research depends upon the behavior of a sound wave. Sound waves travel through the atmosphere and
generally range from 25Hz to 25Khz [7]. In particular, this represents 25 cycles per second to 25 thousand
cycles per second and observe that humans hear in the 25Khz range. As we age our range decreases because
ear fibers become brittle over time and can no longer sense changes at such a high rate. The human ear
perceives sound by the changes in pressure generated by the frequency on both the up and down cycle of
the wave [8]. The speed at which that pressure changes (e.g., the frequency) is the way in which a brain
interprets information as sound. The faster the change (higher frequency) the higher the pitch and vice
versa. The relationship so described provides a conduit to decomposing the raw information into its basic
parts and in turn algorithmically interpreting and processing information about sound. Most users generally
listen to music in the form of a Compact Disc, MP3 Player, or from a television or other stereo source; all
of these systems use an encoding scheme called PCM. PCM stands for Pulse Code Modulation and is the
preferred means of transmitting and storing digital sound information electronically [1]. The following graph
illustrates a simple time domain signal.

A simple graph of a signal sampled over time
(Image taken from Wiki PCM page)

Figure 1.

Gethner, Steinmetz and Verbeke

290

If one observes the red line as a measurement of how intense a sound is recorded over a period of time
(going from left to right on our graph) then one can gain a good idea of how a sound wave is received. In
Figure 1 the small blue dots are discrete points identified along the curve. These Sample points are where
a microprocessor system would measure the sound wave height and store it for use. The number of times
sound is sampled determines how accurately the digital copy represents the real sound. The Shannon-Nyquist
Theorem [7] states that to accurately represent a signal in digital form one must sample at least two times the
maximum frequency. Because most music is sampled at a rate of 44.1Khz, we tend to max out around 22Khz
on average, which is a standard measure in music. From such an encoding we have all the information we
need to break down the original sound into its core components and identify behaviors.

Time Domain Parameterization

The images shown in the upcoming results section are created using the following approach: we primarily
take advantage of statistical characteristics of a sound wave in the time domain. The implementation receives
the PCM over time and parameterizes a set of simple dihedral geometric figures whose edges are drawn in
stages over time based upon initial parameters. We begin with the set X = {x |x ∈ Z,−2k ≤ x ≤ 2k},
which describes the amplitude data. To avoid clutter we limit the total number of animations on screen at
any time to n ∈ Z. Let S = {sk | 0 < k < n} represent our parameterized animation elements such that
sk = (θ, φ, α, ~P , r,m, v) with 0 < θ ≤ α ≤ φ < 2xπ the starting and ending angle, α the current angle
of rotation, ~P ∈ Z3 the centroid, and r,m are the radius and color respectively (the color here is the integer
form of a bitwise combined RGB value). Finally, v represents the step that determines the number of ver-
tices in the geometric figure. We then define a set of mappings fp : X → S that map time parameters to an
animation element, fd : S→ R3, which maps an animation element to the display (a 2x2x2 bounded region
in R3) and fn : R→ Z+ where fn(x) = bmin+ x(max−min)(mod (max−min))c, which normalizes
data for screen display. The following is a table containing the initialization parameters that maps elements
in X to elements in S.

If one observes the red line as a measurement of how intense a sound is recorded over a period of time
(going from left to right on our graph) then one can gain a good idea of how a sound wave is received. In
Figure 1 the small blue dots are discrete points identified along the curve. These Sample points are where
a microprocessor system would measure the sound wave height and store it for use. The number of times
sound is sampled determines how accurately the digital copy represents the real sound. The Shannon-Nyquist
Theorem [7] states that to accurately represent a signal in digital form one must sample at least two times the
maximum frequency. Because most music is sampled at a rate of 44.1Khz, we tend to max out around 22Khz
on average, which is a standard measure in music. From such an encoding we have all the information we
need to break down the original sound into its core components and identify behaviors.

Time Domain Parameterization

The images shown in the upcoming results section are created using the following approach: we primarily
take advantage of statistical characteristics of a sound wave in the time domain. The implementation receives
the PCM over time and parameterizes a set of simple dihedral geometric figures whose edges are drawn in
stages over time based upon initial parameters. We begin with the set X = {x | x 2 Z,�2k  x  2k},
which describes the amplitude data. To avoid clutter we limit the total number of animations on screen at
any time to n 2 Z. Let S = {sk | 0 < k < n} represent our parameterized animation elements such that
sk = (✓, �, ↵, ~P , r, m, v) with 0 < ✓  ↵  � < 2x⇡ the starting and ending angle, ↵ the current angle
of rotation, ~P 2 Z3 the centroid, and r, m are the radius and color respectively (the color here is the integer
form of a bitwise combined RGB value). Finally, v represents the step that determines the number of ver-
tices in the geometric figure. We then define a set of mappings fp : X ! S that map time parameters to an
animation element, fd : S ! R3, which maps an animation element to the display (a 2x2x2 bounded region
in R3) and fn : R ! Z+ where fn(x) = bmin + x(max � min)(mod (max � min))c, which normalizes
data for screen display. The following is a table containing the initialization parameters that maps elements
in X to elements in S.

Parameter Value Description
x Current amplitude
xk�1 Previous amplitude
� Signal to Noise Ratio
g Gain
✓ |x/255 ⇤ 2⇡| Starting angle
� ✓ + |xk�1/255 ⇤ 2⇡| Ending angle
↵ ✓ Current angle
r x/(max(xk) ⇤ 2) Radius
v (�� ✓)/30 Rotational velocity
ColorRed fn(x) (mod 255) RGB Red Value
ColorGreen xk�1 (mod 255) RGB Green Value
ColorBlue � ⇤ 255 (mod 255) RGB Blue Value
Px fn(rand() + 2g � 1) Centroid X
Py fn(rand() + 2g � 1) Centroid Y
Pz fn(rand() + 4g � 1) Centroid Z

Time Domain Initial Parameterizations

Table 1.

Example Set of Parameterized
Geometric Figures

Figure 2.

A View of Music

291

As a new amplitude is received, an initial state that represents the signal at that time is constructed
by way of the parameters defined in Table 1. There are two key stages consisting of a paint interval and
time step. When a paint interval occurs the elements in S are rendered as a curve extrapolated from the
set of rotations R = {i | i ∈ Z+, i0 = θ, ik+1 = ik + (φ − θ)/60, i ≤ α}. The shape is then mapped to
the display with a simple linear transformation fdi(sk) = (r cos(i) + P (sk)x, r sin(i) + P (sk)y, P (sk)z);
this essentially connects the vertices of some partially, or fully formed regular polygon on screen over time.
Depending on the current rotational perspective we also paint a disc at the centroid of a geometric figure
whose size is determined by r − (α − θ)/rφ where r, φ 6= 0 and that produces a visual singularity effect.
Simultaneously, at each time step we increment the current angle α of each element sk by α = α + v.
An animation reaches its life’s end when α ≥ φ at which time it is purged. The size, color and vertex
count of an animation element is a direct representation of the shape of the pulse waveform at the time it
is created. As an additional visual element we also set a gradient tone for the background based upon the
current signal strength where BackgroundRGB = (0, 0, fn((E[X]k − E[X]k−1)/E[X]k)) (mod 128).
Note that our display rotates the entire view matrix about the y-axis (assuming y points north) very slowly
in a counterclockwise direction. The rotation is not associated with the data; however the z-coordinate is
necessary in our mappings and serves to give the user a panoramic perspective on the visuals as they occur.

Road Map

Our long term goal is to see if one can find a pictographic representation that mirrors the flow, tempo and
harmony of music. We know from the work of [8, 9] and [2] that the structure of chords can be represented
by the dihedral group D12. Is it possible that the number of vertices and structure of our geometric figures
are in some way associated with the underlying chord progressions? Figure 3 is an illustration that outlines
a path towards creating a valid hypothesis.

The flow of our search

Figure 3.

Experimentation and Results

Our application was run against a handful of music files, which in this case came from symphony music
downloaded from the internet. To use the application one simply selects the input source, in this case an

Gethner, Steinmetz and Verbeke

292

MP3 file, and then click play. Figure 4 displays snapshots of screen captures at different times while playing
a variety of symphonies. The actual number of screen shots produced is in the hundreds of thousands of
various animations and these are some of the few captured that looked aesthetically pleasing.

Symphony
Sound Dogs

Symphony
12th Symphony, Violin Sonata, Schubert’s Moment Musical

Techno Electronica
Termite Neurology, Termite Serenity, Nao

Tokui, She Nebula Various Composers
Chopin Etude, Debussay Clair de Lune, Mozart Eine Kleine,

Mozart Sonata

Figure 4.

The images in Figure 4 were generated using the technique described in the Time Domain Parameter-
ization section. Notice the conic nature of the successive geometric figures; we conjecture this is due to the
changes in amplitude and we are, in reality, seeing snippets of the waveform increase or decrease over time.

Conclusions

Throughout Western history the concepts of consonance and dissonance, from a music theory standpoint,
has changed in almost every era. Before the Baroque era, every harmony with the exception of a unison,
perfect fourth, perfect fifth, or octave was essentially considered to be a dissonant harmonic interval. What
we associated in the modern day as consonant (e.g. major thirds, major sixths) eventually became accepted
within musical composition, and largely thanks to Jean-Phillippe Rameau’s publication Traité de l’harmonie,
dissonant harmonies were realized as a very integral part of composition due to the resolving progressions
they created in conjunction with consonant harmonies [5]. Though such composition techniques have rules
that are fundamentally derived from discoveries by Pythagoras, there is another more modern way to analyze
consonance from a psychoacoustic standpoint. Through analyzing solely the harmonic components of two
tones, we can compare these frequencies with a critical bandwidth to determine mathematically whether the
two tones are consonant [3]. Despite having these tools to create or evaluate properties of music, there is no

A View of Music

293

objective method for interpreting how a listener experiences or enjoys a piece of music. Our research and
experimentation have provided a springboard toward limitless possibilities of evaluating music by way of
graphical depiction, and in a small way has provided a measurement that decouples the idea of perception
from aesthetics.

Although there is much work to be done we have successfully constructed a prototype implementation
that reads sound from virtually any digital source and creates beautiful animations structurally consistent
with the sound wave input. We created a software framework capable of seamless integration of indepen-
dent processing algorithms as our research continues. We have overcome challenges of synchronizing large
volumes of samples with small volume frame rates when dealing with the time domain.

In the time domain implementation we noticed pictographic transitions in the prototype which largely
mirror the intensity of the tones; this makes intuitive sense since our parameters are constructed primarily
by the changes in amplitude. However, after a demonstration given during a public outreach lecture on
Mathematics and Art [4] by the first author, we received feedback indicating that the animations were not
well aligned with the live music being performed. Our next step is to extract and utilize the frequency
domain for our parameterizations. We will leverage the Prime Factorization Algorithm (a variant of the
Discrete Fourier Transform) and associate color to frequency using the color scale due to Johannes Itten [6].
In the long run, we intend to leverage the geometry of musical chords and uncover a fundamental connection
between the shape of a wave and the mathematics of music.

References

[1] Midi Manufacturer’s Association. History of midi. http://www.midi.org/aboutmidi/tut_

history.php, 2013.

[2] Alissa S. Crans, Thomas M. Fiore, and Ramon Satyendra. Musical actions of dihedral groups. Amer.
Math. Monthly, 116(6):479–495, 2009.

[3] F.A. Everest. Critical Listening Skills for Audio Professionals. Thomson Course Technology, 2007.

[4] Ellen Gethner. Mining the mesermerizing miraculous mysteries of mathematics...for Art! Mini-STEM
School, University of Colorado, 2014.

[5] D.J. Grout, J.P. Burkholder, and C.V. Palisca. A History of Western Music. W. W. Norton, 2010.

[6] Johannes Itten. The Art of Color. Wiley & Sons INC, 2 edition, 1973.

[7] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical
Publishing, San Diego, CA, USA, 1997.

[8] Dimitri Tymoczko. The geometry of muscial chords. Science, 313(0036-8075):72, 2006.

[9] Dimitri Tymoczko. A Geometry of Music: Harmony and Counterpoint in the Extended Common Prac-
tice. Oxford Studies in Music Theory. Oxford University Press, USA, 2011.

[10] C. van Campen. The Hidden Sense: Synesthesia in Art and Science. Leonardo (Series) (Cambridge,
Mass.). MIT Press, 2008.

Gethner, Steinmetz and Verbeke

294

http://www.midi.org/aboutmidi/tut_history.php
http://www.midi.org/aboutmidi/tut_history.php

