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Abstract 
Interlocks of Similar or Complementary Figures is the only treatise about girih construction that has survived for many 

centuries.  It is believed that the document was written sometime between the 13th and 15th centuries by an anonymous 

mathematician/craftsman.  This is the only document remaining from the medieval Persian that demonstrates how a 

girih can be constructed using compass and straightedge.  The treatise includes some puzzles for polygon 

transformations. This article includes the study of many puzzles and girihs that have been documented in the treatise. 

All images, except for photographs from the treatise, have been created by the author using the Geometer’s Sketchpad 

(GSP) software program.   

 

   

1. Introduction 
 

In addition to decorated tiling on the surfaces of existing structures from the past, there are a few 

documents about Persian mosaic designs that have survived throughout many centuries and have reached 

us today.  These documents, as scrolls and treatises, include many intriguing girihs, the fundamental 

regions for tiling of ornamental designs, as well as some compass-straightedge constructions and puzzles 

used for transforming one geometric shape to another. 

 

On Those Parts of Geometry Needed by Craftsmen is a treatise written by the well-known 10
th
 century 

Persian mathematician Abûl-Wefâ Buzjâni, who lived and worked in Baghdad, perhaps at the House of 

Wisdom (Bayt al-Hikma), which was a major intellectual center during that era.  The treatise does not 

include any ornamental designs. However, it presents a number of compass- straightedge constructions, 

which are used in the composition of such patterns. 

 

The treatise by Buzjâni was originally written in Arabic, the academic language of that era in the East and 

was translated into Persian during several periods.  In one of the translations by the 15
th
 century Persian 

mathematician Abûl-Es-hâgh Koobnâni, another treatise in its Persian original, was appended: Interlocks 

of Similar or Complementary Figures [1]. Some historians believe that the author of this document is a 

13
th
 century anonymous mathematician/craftsmen [5].  However, in a recent Persian book that includes 

modern translations of both Abûl-Wefâ‘s treatise and this document, the author has been identified as 

Koobnâni [2].  The document itself was not signed by Koobnâni and was not dated.  Moreover, it is not 

clear if the two treatises were together originally.  Therefore attributing the document to Koobnani is 

only speculation.  It is essential to note that the treatise Interlocks is the only known practical manual 

from the past that provides “how-to” instructions for drawing two-dimensional girih patterns. “The 

treatise shows that the girih mode was conceived as a system of proportionally related geometric patterns 

harmoniously interlocking with one another” [4].    

 

The aim of this article is to study and analyze a selected set of girihs and puzzles that have been recorded 

in the Interlocks treatise. The selection includes all those interesting girihs and puzzles that form the main 

body of the treatise.    
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2. Interlocks Treatise’s Puzzles 
 
This section is devoted to the study of some puzzles in the treatise that are used for transforming one 

geometric shape to another.   

 

2.1. Constructing a Kokabi Star.  The treatise began with an interesting but simple puzzle (the left 

image in Figure 1).  The second image is the construction of the puzzle using GSP. By cutting two 

decagons and pasting pieces together as in the first and second images, one is able to construct a larger 

decagon with a star at the center, with the shape of the great pentagram (Kokabi star in Persian), which is 

different from the pentagram 5/2 star polygon. Kokabi can be constructed using the segments that 

constitute the 10/3 star polygon (third image in Figure 1).  It is interesting to note that the outline of the 

two Penrose quasi-crystal tiles, kit and dart, constitute a petal of this star as in the third image. The right 

image in Figure 1 is a Kokabi tiling on the surface of a ceiling at Kaseh Garan School, Isfahan, Iran, that 

was studied in an article by the author [6]. 
 

    
 

Figure 1: Constructing the Kokabi star and its application to Persian architecture 

 

2.2. Octagram and Square Transformations. The left image in Figure 2 presents a puzzle that 

transforms a square to an octagram.  The right image is a GSP construction of the puzzle, where the 

construction has followed the lines of cuts suggested by the treatise.  It seems the treatise suggests that the 

square should be cut along with the lines that constitute four congruent right triangles with the small sides 

congruent to one half of the longer side, as is exhibited in the right image of Figure 2.   

 

   
 

Figure 2: Transforming a square into an octagram and vise versa  

 

Even though such a cut creates an octagram as in the right image in Figure 3, this octagram is not 

equilateral, which is a condition that seems necessary in puzzles like this.       

 

For cutting a square into pieces to create another square with lines for making an  equilateral 

octagram, one may do as follows:  Suppose AB is a side of a given square.  Drop a perpendicular 
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to line AB at B and call it line x.  On x make an arbitrary point C. Find point D in such a way that 

BC  DC and BC = DC. Find point E in a way that BC = CE.  Now find point F with the 

condition ED = EF.  Connect A and F and make a segment parallel to AF from C to cut AB at G.  

G is the desired point. This process is an easy task using two circles that have been constructed 

in the left image of Figure 4.  Now if the square is cut according to segments AG and GB, as in 

the second image in Figure 4,  and a small square with sides AG – BG is added one can make a 

bigger square that can be transformed to an equilateral octagram (third and fourth images in 

Figure 4).   
 

 
Figure 3: Transforming a square to an octagram, which is not equilateral 

 

 
Figure 4: Transforming a square to an octagram, equilateral case 

 

Sketch of proof:  Segment AB and arbitrary point C on the perpendicular line to AB, x, are given. Find 

points D, E, F, and G according the above instruction. Suppose m(BC) = a.  Then m(DE) =    a.  As a 

result m(CF) = (   +1)a. Note that CG is parallel to AF.  So BGC and BAF are similar.  Therefore, 

there exists a number b such that m(BG) = b and m(AG) = (   +1)b. The cuts in the second image in 

Figure 4 are based on b and (   +1) b. Therefore, the measurement of a side of the small square in the 

middle of the third image is m(QR) = (   +1)b – b =    b and therefore m(PQ) = b.  But then employing 

the isosceles right triangle OQR one can obtain that m(QO) = b.  Hence m(PQ) = m(QO) and as a result 

the octagram on the right image in Figure 4 is equilateral. □      

 

This transformation is easily reversible by cutting an equilateral octagram along the lines that connect 

vertices according to the right image in Figure 4.  The job of introducing a  compass-straightedge process 

for beginning with a square (as in the third image in Figure 4) and ending with the equilateral octagram 

(as in the right image in Figure 4) by some appropriate cuts seems more challenging and is left to 

interested readers.    
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2.3. Hexagram and Square Transformations. The image on the top left in Figure 5 is from the treatise.  

A regular hexagram, as in the top middle image in Figure 5, is given. Label a few of its vertices as in the 

image.  Extend AE to AK in a way that EK = EG.  Construct the semicircle AK to intersect the extension 

of GE at R.  Find S on AK in such a way that SE = RE.  Note that SE is congruent to a side of the desired 

square. This is a fact that can be proven using the relationship between the area of the hexagram and the 

measure of segment SE based on the equation    =   = AEEK = AEEG = 3a. 2h = 6ah =12 (1/2 ah), 

where a is the measure of a side of the hexagram and h is the measure of the altitude of CBD, which is 

one of the 12 congruent equilateral triangles that constitute the hexagram. M is the midpoint of AS, and L 

is the midpoint of SE.  Find N on HG in a way that GN = AM.  Drop perpendicular lines from S and L to 

MN to find points Q and P.  Note that LP = LS = LE.  This is a condition that is imposed by the fact that 

each side of the assembled square should be congruent to segment SE. Therefore, m(PL) (from PLSQ) + 

m(PL) (from PLEFGN) = m(SE). Make similar cuts to the other part of the hexagram.  Now arrange 

pieces to compose the square in the top right image in Figure 5. 

 

    

 
 

Figure 5: Transforming a hexagram into a square and vise versa 

 

It is not difficult to confirm the validity of the transformation from square to hexagon as is presented on 

the bottom images in Figure 5. However, the treatise does not give any instruction in this regard.  The 

series of images on the bottom part of Figure 6 presents such a process.  At first a 60 angle can be 

constructed so that its vertex is on the midpoint of a side of the square and then using this angle one 

should construct an equilateral triangle so that the other two vertices are located on two sides of the 

square.  Next, using the midpoints of the square’s sides, two trapezoids are constructed according to the 

images.  The rest of the decomposition can be followed easily throughout the last few images in Figure 5.  

 

 

2.4. Regular Hexagon and Equilateral Triangle Transformation. A regular hexagon is given.  Label it 

as the middle image in Figure 6.  Draw the diagonals AC, CE, and EA.  ACE is an equilateral triangle.  

Find P, the midpoint of CD and connect it to A.  Repeat this process for EF and AB to construct LMN 

(which is an equilateral triangle). Point O, the center of the hexagon, is the centriod of LMN.  The 

medians divide LMN into 6 congruent right triangles as in Figure 6.  Now by re-arranging the pieces that 

constitute the hexagon, an equilateral triangle will be created (Figure 6. Right).   

 

Sarhangi

30



 
 

Figure 6: Transforming a hexagram into an equilateral triangle and vise versa 

 

So far the mathematical proof to show the validity of this transformation has not been found.  Moreover, 

the reverse process seems more challenging.   

 

In order to show that this transformation is valid, one should prove m(MC) = 2 m(OT). This is a necessary 

condition as is presented in the triangle on the right because we should have m(O’M’) = m(O’O”) = 

m(O’T’) + m(T’O”).  But since OMS = /6, m(OM) = 2m(OT). So it is sufficient to prove that m(MC) = 

m(MO).  Using GSP one observes that a circle with center M and radius MO passes through C.  But this is 

only an observation and should be proven mathematically.   

 

3. Interlocks Treatise’s Girihs 
 
In this section a number of interesting girihs that are recorded in the treatise are presented and analyzed.  

 

3.1. An Octagonal-Hexagonal Girih. The left image in Figure 7 is from the treatise. The square ABCD is 

given as in the middle image in this figure.  Pick arbitrary point P on diagonal AC.  Find G on CD in such 

a way that CP = CG.  Find H on BC so that CH = PG.  Make equilateral triangle CMH.  Find F on AC in 

such a way that MF = CP. Find K on BC in a way that FH || OK.  Find T on CM so that CT  = CK.  Using 

K and T, complete a quarter of a regular hexagon as in the figure. Compose the same quarter of the 

hexagon in a rotational fashion around the other vertices of the square to find Q, R, and S. Polygon QRST 

is a square.  Using this square one can construct a regular octagon as is presented in the middle figure.  It 

is interesting to note that P and K are independent.  Therefore, it does not change the end result if one 

changes the position of the arbitrary point P. 

 
Figure 7: The left image is from the treatise, the middle image includes a regular octagon, the right 

image is a girih where all sides are congruent.    

 

It is not difficult to realize that even though the sizes of the sides of the octagon and hexagon are very 

close to each other, they are not congruent.  Using the four vertices Q, R, S, and T as the center of some 
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circles with radius congruent to the sides of the hexagon, one can compose the right girih, where all sides 

are congruent.  In fact, from the left image in Figure 7, it seems that the congruency of the sides was a 

condition. Figure 8 illustrates the tessellations for both girihs.   

 

 
 

Figure 8: (Left) The regular octagon-hexagon tiling; (R) A tiling with congruent sides. 

   

3.2. Making a Girih for a 10-Petal/12-Petal Combination Rose Tiling. The left image in Figure 9 is a 

sketch of a girih as appears in the Interlocks treatise.  This girih creates a pattern that includes both ten 

and twelve petal roses. The second and third images illustrate the two girihs of 10-petal and 12-petal roses 

separately.  The last image shows how this combination occurs.  

 

  
 

Figure 9: A girih in the Interlock treatise, and the two girihs that create this design 

 

The method for the creation of the two girihs of 10-petal and 12-petal roses, the Radial Grid Method, is 

attributed to Maestro Maher-al-Naghsh.  He used this method for the construction of a different girih, but 

one with sufficient expertise in girih construction can discover the required general steps for the 

composition of a large number of girihs in different shapes [7]. 

   

The five volume book in Persian, Construction and Execution of Design in Persian Mosaics, authored 

and illustrated by M. Maher-al-Naghsh [3], is the most comprehensive recent book about the construction 

of the Persian mosaic designs. M. Maher-al-Naghsh, a professional artisan,  who inherited his profession 

from his ancestors of several centuries and had the most access to original artisans’ repertories of the past.  

His last name means a skillful designer. The ornamental qualities of the geometric constructions in his 

book and their executions performed on different mediums on the walls, floors, interiors and exteriors of 
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domes, doors and windows, and many more strutures provide a pleasurable journey to the past for all 

readers.  

 

The 10-Petal Rose Construction: Following the images in Figure 10 from top left to bottom right, divide 

the right angle A into five congruent angles by creating four rays that emanate from A (angle COD in 

Figure 9 paper [6] divides a right angle into five congruent angles). Choose an arbitrary point P on the 

third ray, counter-clockwise, and drop perpendiculars from P to the sides of angle A.   This results in the 

rectangle ABPC along with four segments inside this rectangle, each with one endpoint at A and whose 

other endpoints are the intersections of the four rays with the two sides of PB and PC of rectangle ABPC 

(the first image in Figure 10).   Find O, the midpoint of the third segment created from the third ray.  

Also, find M, the midpoint of the second segment.   Construct two arcs with center A and radii AO and 

AM. Point N is the intersection of the fourth ray and the smaller arc.  Drop a perpendicular from N to AB 

to intersect the second and third rays to create two more points. Make a parallel line to the first ray from 

M and also parallel lines to the third ray from M and N to find the intersection points as are illustrated in 

the second and third images.   Using these points and properties of the reflective and rotational 

symmetries, one is able to make a set of new points that constitute the petals of the rose, as is illustrated in 

the third and fourth images.  Find the intersection of the first ray and the larger arc and drop a new 

perpendicular line to AB as is illustrated in the fourth image. Extend the segments that constitute the 

petals and find the intersections of them with segments that are created by the large arc and the rays as is 

shown in the fifth image. The sixth image shows the final segments for the construction of the10-petal 

rose about vertex A. The seventh image in Figure 10 is created by a rotation of 180 about O of the rose 

part, which is a usual action in most girihs to complete the design. The last image in Figure 10 is the 

complete 10-petal rose girih. 

 
 

Figure 10: The composition of 10-petal rose pattern using the Radial Grid Method 

 

The 12-Petal Rose Construction: To create this girih using the radial grid method, the right angle should 

be divided into six congruent angles to create a 12-petal rose (the angle bisector of one of the angles of an 

equilateral triangle creates two 30 angles and repeating the process for one of them creates two 15 

angles). In general, the construction should begin by selecting an arbitrary point P on the fourth ray.  But 
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since the two generated girihs should be combined as is shown in Figure 10, the two rectangles should 

have the same size widths. So the process should start by selecting segment AB in the last construction as 

the width and then finding P by dropping a perpendicular from B to AB to intersect the fourth ray. The 

rest of the girih construction can be followed step-by-step through images in Figure 11.     

 
 

Figure 11: The composition of 12-petal rose pattern using the Radial Grid Method 

 
Now following the images in Figure 9 one can pick one half of each girih in a way that the two centers 

coincide. Figure 12 presents three tessellations.  The left one is the 10-petal rose tiling and the right one is 

the 12-petal rose tiling.  The middle image is the 10-12 petal combination tessellation.   

 

 
 

Figure 12: The 10-petal tiling, the 10-12 petal combination tiling, and the 12-petal tiling 
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Comparing the two left and right images in Figure 9, the exact image from the treatise and the final 

construction by the author, one notices extra lines and arcs in the original image in the treatise.  It seems 

that these are the steps that the author of the treatise has taken to construct the girih.  However, it is very 

possible that the author was only a person who recorded interesting girihs and sometimes tried to justify 

the constructions by making some extra lines and arcs.  After examining these extra lines and applying the 

suggested method written in the document, it is not difficult to come to the conclusion that this method 

does not work and is wrong.  The aforementioned radial grid method that M. Maher-al-Naghsh presented 

is very organic, simple, and effective, in that it can be claimed that this was the method that was used to 

create the 10-12 petal rose girih originally.  It is very possible that the author of the treatise was a 

mathematician who was trying to justify the steps of the girih construction and not an artisan, who was in 

general very familiar with construction methods available at that time.      

 

3.3. The Last Girih. The number of pages of the Interlock treatise is twenty.  In the last page of the 

document one can find the last girih as it appears in the left image in Figure 13. The right image in Figure 

13 shows a tiling that has been composed based on this girih.  The images in Figure 14 present the step-

by-step instruction for the construction of the girih. 

 

  

 

Figure 13: (Left) The last girih in the treatise, and (Right) The tessellatiomade from this girih 

 

Divide the given right angle into five congruent angles.  Select an arbitrary point P on the second ray.  

Make a perpendicular line to this ray at P to intersect the first and third rays at A and B respectively.  

Make a circle with center P and radius PA. This circle meets the second ray at C. Angle ACB is a right 

angle.  Continue this process to make a quarter of a decagram as in the second image.  The third image 

exhibits how one can make petals for this rose by extending the obtained segments in the previous image.  

The fourth image shows how one can make squares using the sides of the petals.  The next image presents 

another congruent square whose diagonal is a part of the third ray. Find the center of this square and call 

it O.  Now by rotating the constructed part in the fifth image by 180, about O one can generate a girih as 

in the sixth image.  The seventh image shows how a person can divide the square in the middle into 

sixteen small squares and then keep some sides of the small squares and erase the rest to make the design 

in the middle of the image.  The next two images demonstrate how one can continue this process of 

making designs on all other squares to complete the process.  
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Figure 14: The girih making process for the girih in Figure 19. 

 

4. Conclusion 
 

The treatise Interlocks of Similar or Complementary Figures, even though many different parts of it are 

not clear and comprehensive, and despite the fact that this is the only document from the past that shows 

how girihs are composed, establishes the fact that there was a strong relationship between mathematicians 

and artisans in medieval Persia.  This relationship, as can be observed from the treatise, was purely based 

on the knowledge of mathematics and not on any system of ideology or belief.  Even though the treatise is 

old, many ideas for puzzle and girih making are fresh and can be used as parts of creativity and learning 

projects and workshops.  The treatise provides readers with opportunities to engage in some practical 

activities, to develop new tiling patterns, or create topics for the classroom.      
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