
3D-Dithered Ortho-Pictures:
3D Models from Independent 2D Images

Gershon Elber
Dept. of Computer Science, Technion – IIT, Haifa 32000, Israel

gershon@cs.technion.ac.il

Abstract
This work portrays a scheme to simultaneously 3D-dither two (or more) 2D gray-level images in IR3, in orthogonal
orthographic views, into one 3D model embedded in a cube, so that the different input images are seen from the
different faces of the cube. From one axis-parallel orthographic view of the cube model, the first image is seen, and
from a second, orthogonal, orthographic view, the second image is seen. We show that the dithering problem of
more than one image does not have an exact solution as one image cannot be completely decoupled from the other;
however, for images with rich enough gray-levels, the result will be a highly precise 3D-dithering of both images.
Moreover, error correction methods common in classical dithering, such as the well known Floyd-Steinberg [8]
algorithm, can be exploited in this 3D-dithering scheme. We then present some tangible examples, etched in glass
(See Figure 1).

1 Introduction

The process of dithering a 2D image, as is described in any fundamental computer graphics book [9], follows
two main steps, in general. In the first, a priori, stage, i/n2, i = 0...n2 gray-levels are encoded in 2D-
dithering matrices of size (n × n). Each such dithering matrix encodes a gray-level between zero and one,
of one pixel, and is created by painting the n2 entries in the dithering matrix black or white. In this work, we
henceforth denote the entries of the dither matrix as micro-pixels. As an example, for n = 3, n2 = 9 micro-
pixels discretely create n2+1 = 10 different gray-levels. In the ensuing discussion, we will interchangeably
consider gray-levels to be between zero and n2 or between zero and one, as i/n2, i = 0...n2, depending on
the context, and whenever it is clear.

In the second stage of the traditional 2D-dithering process and given an image of size (K×K), colored1

or gray-level, each pixel is quantized to one of the n2 + 1 discretely available intensity gray-levels. The
closest quantized intensity is selected for every gray-level pixel and, possibly, the error between the original
gray-level at the pixel and the quantized level can be computed. That said, this error can then be diffused or
propagated to the neighboring pixels using, for example, the well known Floyd-Steinberg [8, 9] algorithm.

Given two images of size (K × K), this paper proposes a simultaneous 3D-dithering scheme that
operates by meticulously positioning, typically K2, voxels into a discrete cube volume of size (K×K×K).
Each voxel is further assigned a 3D-dithering matrix and then divided into micro-voxels, again in a 3D micro-
grid, of size (n × n × n), where up to n2 micro-voxels are set. Several video examples of different such
etched glass cubes can be seen at http://www.cs.technion.ac.il/∼gershon/V3dDithered.

1Colors can be converted to gray-levels via the accepted CIE formula of Gray = Red ∗ 0.3+Green ∗ 0.59+Blue ∗ 0.11 [9]

Figure 1 : 3D-dithering of two 2D images of the Obamas (left and right), etched in one 3D glass cube.
1

Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture

207

http://www.cs.technion.ac.il/~gershon/V3dDithered

The end result of this arrangement is a 3D model, formed out of O(n2K2) micro-voxels, which looks
like the first gray-level image from one view and like the second gray-level image from an orthogonal view.
See, for example, Figure 1 that is an example of such a 3D dithered model that is etched in glass.

The rest of this work is organized as follows. Section 2 surveys the state of the art in this area. Sec-
tion 3 presents the different stages of the basic 3D-dithering algorithm and in Section 4, some extensions are
considered. In Section 5, additional results are presented and we conclude.

2 Previous Work

This work explores the synthesis of 3D-dithered geometry that projects to different gray-level images in
different directions. The outcome has merit in both the sciences and the arts, with relevance to the areas
of geometric modeling and the plastic arts, specifically. Hence, we now present related previous work that
constitutes a nexus between the geometric modeling community and artistically-oriented design. This, while
recalling that the vast majority of contemporary computer-based geometric modeling packages are geared
toward mechanical design, focusing on the creation of 3D models that satisfy precise design and/or manu-
facturing needs.

Some artists specialize in creating models that look different from different views. Yaacov Agam [2]
created 3D kinetic statues and used technologies such as lenticular printing. His Agamographs look com-
pletely different from different views, exploiting parallel vertical strips of different images that face different
directions. Interestingly enough, the recent work of [4, 7] can be seen as an extension of Agam [2], creating
shading that follows two input images from two different views by controlling the shapes of zero dimensional
small elements like ellipsoids and boxes in [7] and pyramids in [4], instead of the one dimensional strips.

Shigeo Fukuda [10] created beautiful work such as “Duet”, “Love Story” and “Cat/Mouse”, all depict-
ing two different scenes from two orthogonal directions. Other relevant artists are Markus Raetz [14] and
Francis Tabary [16], who also sculpt such work; for example pieces showing one word from one direction,
and another word, usually the antonym, from another. Also relevant is the “Escher for Real” project [6]
that presents 3D geometry that looks completely different from different view direction; see Figure 2 for an
example.

Figure 2 : An artifact from the “Escher for
Real” project [6] that looks like the Jew-
ish/Israeli ’Menora’ symbol/emblem and
the Technion logo from two different views.

In [13], outline shadows are used as a source for syn-
thesizing such 3D models, which projects to the different
outlines in different views. Since the solution does not
always exist, the problem is posed and solved as an opti-
mization problem.

In [15], the problem of creating a 3D model that re-
sembles two different shapes from two different views is
also posed as an optimization problem of deforming a
given model to follow the silhouettes of a different model.
Figure 3 shows one result of [15]. Another noteworthy
and somewhat related work is [12] where 3D Halftoning
is defined toward tiling and filling of volumetric data sets
such as porous materials.

The vast majority of this state-of-the-art work dealt
with the silhouettes or outlines of the geometry and was
incapable of handling gray-levels and shading. The noted
exception is the work of Y. Agam [2] and his Agamographs and its extensions in [4, 7]. Indeed, our work
herein advances this concept and explores the ability of presenting completely intermixed two or more gray-
level images, as a one 3D dithered model.

Elber

208

3 Algorithm

Figure 3 : The ‘knishop’ - a combination of
a ‘knight’ (left) and a ‘bishop’ (right) as one
merged smooth 3D model, following [15].

We seek to derive an ability to simultaneously dither, as
precisely as possible, two (or even three or more) 2D im-
ages of size K2 pixels in a single 3D model – a cube of
size (K × K × K). The 3D cube model will be tiled
by at least K2 voxels, in 3-space, while typically, K2

voxels are used. These K2 voxels should cover all K2

pixels of one image when projected along the X⃗ direc-
tion (Y Z plane) presenting the first image2. In addition,
when projected along the Y⃗ direction (XZ plane) another
set of K2 pixels should be covered and the second image
should be presented. Further, a third set of K2 pixels may
be covered, and if so a third image should be presented
when the same set of K2 voxels is projected along the Z⃗ direction (XY plane)).

The problem of placing K2 voxels in a K3 cubic volume so that they cover all K2 pixels when projected
along the X⃗ direction, along the Y⃗ direction, and possibly along the Z⃗ direction, has several simple solutions.
For a coverage of the K2 pixels in the X⃗ and Y⃗ projection directions only, one can simply place K2 voxels
along the diagonal plane of X = Y , at (i, i, k), 0 ≤ i, k ≤ K − 1. A more general random placement is
also feasible via the following observation: Let P = Permute(m) be some random permutation of the m
integers from 0 to m− 1. Then, Algorithm 3.1 will randomly place K2 voxels in the K3 cube so as to cover
all K2 pixels (i.e. constitute a coverage) when projected in the X⃗ or Y⃗ directions.

Algorithm 3.1 (2-projections’ 3D coverings)
Input:
K: Size of cube to tile with K2 voxels;
Output:
V: Set of K2 3D placements of voxels, covering
all K2 pixels when viewed from X⃗ or Y⃗ ;
Algorithm:

1: V ← ϕ;
2: for z = 0 to K − 1 do
3: P ← Permute(K);
4: for x = 0 to K − 1 do
5: V ← V ∪ {(x,P[x], z)};
6: end for
7: end for
8: Emit V;

The fact that Algorithm 3.1 constitutes a coverage in
the X⃗ or Y⃗ directions stems from the observation that in
each row (z level) all indices of 0 to K − 1 are visited in
both X and Y . In Algorithm 3.1, we assume that every
invocation of Permute results in a new random permuta-
tion. Moreover, if the permutation is set to be the identity
throughout, i.e. P[i] ≡ i, we are, again, reduced to the
diagonal plane, placing voxels in line 5 of the algorithm
at (x, x, z);

Covering all the K2 pixels by K2 voxels in 3-space,
when projected in the three directions of X⃗ , Y⃗ and Z⃗, is
also feasible but is a bit more involved. One such feasi-
ble placement is along diagonal planes normal to vector
(1, 1, 1), as the set (of centers’ locations),

V = { (x, y, z) | (x+ y + z) mod K = 0,

x+ y + z ̸= 0, 0 ≤ x, y, z < K },

of O(K2) voxels which is also shown in Figure 4. Random placement of K2 pixels that achieves the
necessary coverage from the X⃗ , Y⃗ and Z⃗ directions is also possible; see [7].

Having the K2 voxels in place, each voxel is, in turn, formed out of (n× n× n) micro-voxels ordered
in a 3D-dithering matrix. When projected in the X⃗ , Y⃗ (and possibly Z⃗) directions, this voxel will yield the
desired gray-level of the relevant pixel in the relevant image, if possible. As a result, the 3D matrix will look
like the two (three) given gray-level pixels of the input images, from two (three) different orthogonal views.

2From now on and unless otherwise stated, we will assume the placement of only K2 voxels, which is the obvious minimum
requirement while this number can optionally grow up to K3 voxels, filling the entire 3D cube.

3D-Dithered Ortho-Pictures: 3D Models from Independent 2D Images

209

(a) (b) (c) (d)
Figure 4 : A placement of O(K2) voxels at {(x, y, z) | (x+y+
z) mod K = 0, x + y + z ̸= 0, 0 ≤ x, y, z < K } (a) covers
all K2 pixels in the projection along the (almost) X⃗ (b), Y⃗ (c)
and Z⃗ (d) directions.

For now, we will assume a 3D-
dithering process for two images
only. Even this (relatively) sim-
ple problem of simultaneously 3D-
dithering two images introduces
new challenging degrees of free-
dom and is divided into several
stages. In Section 3.1, we will
show that for the matching process
of pixels in the two images, for 3D
dithering, not every gray-level of
one pixel, from one view direction,
can be a perfect match to every gray-level in a second pixel, in a second view direction. Equipped with the
knowledge of what is feasible and what can be expected at the pixel–pixel matching level, in Section 3.2 we
examine the matching a whole row of one image with a whole row of the second image. Then, the whole
algorithm to 3D-dither two gray-level images in a single 3D cube is finally presented in Section 3.3.

3.1 Pixel–Pixel Matching

X⃗ Y⃗��) PPq(a) (b) (c)

Figure 5 : Having 3 micro-pixels covered from
X⃗ means we can have, for instance, 1 (a), 2 (b),
or 3 (c) micro-pixels covered from Y⃗ . Interior
micro-voxels are shown as spheres.

Consider two independent pixels of two different or-
thogonal images, already quantized to two (out of
the n2 + 1 available) gray-levels, 0 ≤ nx, ny ≤ n2.
Having a 3D-dithering matrix of size (n×n×n) of
micro-voxels’ cells, we seek to place micro-voxels
in the n3 cells so that when the matrix is projected
in X⃗ , exactly nx micro-voxels will be seen (out of
n2) while a projection of the matrix in Y⃗ will reveal
ny micro-voxels (out of n2).

X⃗ Y⃗��) PPq(a) (b) (c)

Figure 6 : Having 9 micro-pixels covered from
Y⃗ (ny = 9) means we can have, for example,
nx = 3 (a), nx = 5 (b), or nx = 9 (c) micro-
pixels covered from X⃗ . In fact, only (nx =) 3
to 9 micro-pixels could be covered from X⃗ , when
ny = 9.

Figure 5 shows one example for the case of
n = 3. A voxel with 33 = 27 micro-voxels’ cells is
to be filled up with micro-voxels so that nx micro-
pixels are seen from X⃗ and ny micro-pixels are seen
from Y⃗ . In effect, this creates a voxel with a gray-
level of nx/n

2 from X⃗ and a gray-level of ny/n
2

from Y⃗ . In a 3 × 3 micro-grid, we can create ten
(nx, ny ∈ {0, ..., 9}/9) gray-levels. In Figure 5 (a),
three micro-voxels can create a coverage of nx = 3
and ny = 1. Figure 5 (b) reveals a case of three
micro-voxels’ coverage of nx = 3 and ny = 2,
while Figure 5 (c) presents a case of three micro-
voxels’ coverage of nx = 3 and ny = 3. Possible
placements of micro-voxels in these three arrange-
ments are also shown as spheres in Figure 5.

Unfortunately, the difficulty is even greater and
beyond this non-uniqueness. Not every gray-level of a pixel from X⃗ could be matched, using micro-voxels,
with every gray-level of a pixel from Y⃗ . Clearly, a coverage of nx = 0 could only be matched against a
coverage of ny = 0. Moreover, a coverage of all nine micro-pixels (for n = 3), from Y⃗ (ny = 9), requires a
minimum of three micro-voxels covered from X⃗ (nx = 3). See Figure 6.

Elber

210

A simple inspection of all possibilities of micro-pixel coverage in a matrix of size n = 3 (see Table 1)
reveals what is possible and what is not. Impossible (nx, ny) pairs are the result of close to complete micro-
pixel covering in X⃗ which cannot be concentrated in a few micro-pixel covering in Y⃗ , or vice versa. In
other words, very bright images better not be matched with completely dark images. If an infeasible pair
(ñx, ñy) is forcefully matched, a close feasible pair (nx, ny) must be selected, introducing some new gray-
level Manhattan distance error,

ϵ = |nx − ñx|+ |ny − ñy|. (1)

This ϵ error can be minimized and/or diffused, a topic we will return to in Section 4.

Cover
in X⃗, Coverage in Y⃗ , ny

nx 0 1 2 3 4 5 6 7 8 9
0 + - - - - - - - - -
1 - + + + - - - - - -
2 - + + + + + + - - -
3 - + + + + + + + + +
4 - - + + + + + + + +
5 - - + + + + + + + +
6 - - + + + + + + + +
7 - - - + + + + + + +
8 - - - + + + + + + +
9 - - - + + + + + + +

Table 1 : Coverage possibilities of 3D-dithering of
size (3× 3× 3) micro-pixels from both the X⃗ and
the Y⃗ viewing directions. A ’+’ denotes an existing
dithering matrix while a ’-’ hints that none exists.
Note that the matrix is always symmetric.

The 3D-dithering matrices should be built only
once. While the optimal (minimal) 3D-dither matri-
ces are not unique, one can select a valid instance
and expect a reasonable result. Motivation to al-
ternate among the non unique optimal 3D-dithering
matrices could stem from the desire to alleviate
Moire patterns [1] in the result. In this case, several
alternating dithering matrices could be stored for the
same (nx, ny) pair and used interchangeably.

Nonetheless and while inherently exponential,
a simple algorithm could be written to iterate over
all 2(n

3) possibilities of 3D-dithering matrices of
size n3, only to select one (or more) instance of a
3D-dithering matrix for every feasible (nx, ny) pair.
In this work, we have precomputed and employed
3D-dithering matrices for n = 2, 3, 4.

Having an understanding of what can (and
what cannot) be done at the pixel–pixel matching
level, the next section looks at the matching of one
complete row from one image with a complete row
in a second image.

3.2 Row–Row Matching

(a) (b)
Figure 7 : Two images are 3D-dithered in a
3D cube model, one row at a time (a). Here,
the pixels of one (top level) row of one im-
age, in red, are to be matched with the pixels
of a second (top level) row of the second im-
age, in green. Three matched pairs of pixels
are presented in (b), as examples.

At this point, it is clear that the simultaneous 3D-
dithering of two images not only introduces errors due
to the classic intensity quantization problem, but also due
to the inter-dependency in the 3D-dithering matrices be-
tween the X⃗ and the Y⃗ directions, and the infeasibility of
some (nx, ny) quantized intensities of pairs of pixels.

Assume two images only, for now, that are inspected
from the X⃗ and Y⃗ viewing directions. The pixels in a row
of one image at some fixed Z level can only be matched
with pixels in a row of the second image at the same Z
level. Hence, we seek to form a one-to-one match be-
tween all the pixels in one row of the first image to all
the pixels in one row of the second image; see Figure 7.
Denote all the pixels in the row of the first image by
I1(p), p ∈ [0, ...,K − 1] and those of the second im-

3D-Dithered Ortho-Pictures: 3D Models from Independent 2D Images

211

age by I2(q), q ∈ [0, ...,K − 1]. Several possibilities for such one-to-one matchings exist:

1. Enforce all voxels to be in one diagonal plane, which means the placements of voxels at (p, p, z) ∀p ∈
[0, ...,K − 1]. That is, I1(p) is matched with I2(p). This is likely to generate the largest ϵ error.

2. Allow a completely free row matching, letting any one pixel in I1(p) uniquely match any one pixel
in I2(p), and vice versa. This freedom reduces the problem to a weighted bipartite graph matching
problem [5] with the following constraints: pixel I1(p1) (I2(q1)) must be matched to precisely one
pixel I2(q2) (I1(p2)) (only “monogamous marriages” are allowed). This is likely to generate the
smallest ϵ error.

3. Allow a compromise between the above, 1 and 2, options. That is, I1(p) will be matched only with
I2(q), such that |p− q| < w, where w is some bound on the deviation, also denoted as the width of the
matching. For small w, the 3D model is still bound to an almost diagonal plane. For w = 1, this case
is reduced to option 1 and for w = K, we are reduced to option 2.

Much like [15, 13, 4], we assume a precise set of (orthographic) input views over the model. The larger
the width w is, the more distorted the presented image will be, when the 3D model is inspected from a finite
distance or a somewhat different view. A partial remedy can be offered here to the influence of the distortion
by limiting this w width.

Algorithm 3.2 (3D image–image dithering)
Input:
K: Output size to tile with K2 3D-dithering voxels;
n: 3D Dithering size of micro-voxels;
I1ij , I2ij: Two images of size (K ×K);
Output:
C: K2 voxel positions, Pm = (xmp , ymp , zmp), and
intensity pairs, (nm

x , nm
y), m = 1, ...,K2, 0 ≤

nm
x , nm

y < n, to 3D-dither images I1ij from X⃗ and
I2ij from Y⃗ ;
Algorithm:

1: P ← ϕ;
2: for z = 0 to K − 1 do
3: I1z ← I1iz , ∀i;
4: I2z ← I2iz , ∀i;
5: P ← P ∪RowRowMatching(I1z , I2z , z);
6: end for
7: C ← ϕ;
8: for each Pm in P do
9: C ← C ∪

{
Pm, (nm

x , nm
y)

}
;

10: end for
11: Emit C;

The solution to a weighted bipartite graph match-
ing is well known in computer science [5]. The Hun-
garian algorithm is used in this work (and hence no
code is presented in this Section) to compute the op-
timal match, with a time complexity of O(K3) and
actual real time performance of a few seconds for
K < 1000. The weights here are set to zero for in-
tensity matching pairs that have a valid 3D-dithering
matrix (i.e. a ’+’ in Table 1) and the weights are set
to be the Manhattan gray-level ϵ error, Equation (1),
if invalid (a ’−’ in Table 1). For example, and using
Table 1 for 3D-dithering matrices of size (3 × 3 × 3),
the weight of pair (4, 5), a ’+’ in Table 1, will be zero
but the weight of pair (4, 0), a ’−’, will be two as the
distance error in Table 1 to the closest ’+’ is two.

3.3 Image–Image Matching

We are now ready to combine it all together and cre-
ate a 3D cube model of size (K × K × K) formed
out of K2 voxels, with each voxel being formed out of
up to n2 micro-voxels. Algorithm 3.2 presents these
top level steps. RowRowMatching is the algorithm
that matches two rows at level z, from Section 3.2, and
returns the rows’ matched positions. z is provided to
RowRowMatching so it can locate the matched points at the correct Z level. Each voxel, with intensity
pair (nm

x , nm
y), is then tiled with micro-voxels, following the description in Section 3.1.

Elber

212

Figure 9 : An example of two pictures etched in one 3D cube of glass, of a tiger and a lamb.

4 Possible Extensions

The error between the desired (original) pixel intensity and the actual intensity can be accumulated for 3D-
dithering of two images much like in the regular single 2D image dithering. Hence, classical error diffusion
techniques can be used and are capable of alleviating the final global error, for example by adapting a
variation of Floyd-Steinberg [8, 9] algorithm.

Because the width of the matching, w, is typically greater than one pixel and since the expected pixel
intensities in a row are set before the matching algorithm is applied, propagation of the dithering error
to neighboring pixels is limited in this work to pixels in the next row only. The classic Floyd-Steinberg
algorithm suggests the diffusion of the error that is introduced in pixel (x, y) as in Figure 8 (a) whereas herein,
we purged the (x+ 1, y) direction, being in the same row, and instead use the table shown in Figure 8 (b).

A central question throughout the discussion so far has been the extension of the presented solutions
to three (or more) images viewed from the X⃗ , Y⃗ , and Z⃗ directions. Portions of the answer were already
introduced when we showed how to tile the K3 volume using K2 voxels so that all the K2 pixels of the three
images, which are viewed from X⃗ , Y⃗ , and Z⃗, are covered. With this ability, 3D-dithering matrices can also
be designed with prescribed intensities from three orthogonal directions, a tedious task that again must be
computed only once, delineating the feasible supported tri-gray-levels from those that are not.

Pixel Weight
(x+ 1, y) 7/16

(x− 1, y + 1) 3/16
(x, y + 1) 5/16

(x+ 1, y + 1) 1/16

Pixel Weight
(x− 1, y + 1) 3/9
(x, y + 1) 5/9

(x+ 1, y + 1) 1/9

(a) (b)

Figure 8 : Error diffusion used in the classic Floyd-
Steinberg algorithm (a) and herein (b).

The rest of the solution to the simulta-
neous dithering of three images is concep-
tually simple but computationally challeng-
ing. While the proper placement of K2 vox-
els in a cube so they cover three images from
three different directions is feasible, a tri-
partite graph matching, seeking the optimal
matching (placement) for three sets, is to be
applied. Unfortunately, the optimal solution to
weighted tripartite matching is known to have
exponential complexity. Only heuristic approaches could be expected to be feasible. See, for example, [3].

5 Additional Examples and Conclusions

We complete our presentation with two additional etched-in-glass examples, of pictures of a tiger and a lamb,
in Figure 9, and of an Einstein portrait and his famous matter-energy conversion equation, duplicated many
times, in the other image, in Figure 10. These glass cubes (I.e. Figures 1, 9 and 10) are 60mm on the side
and contain an order of a million micro-voxels each, etched in glass using an existing focused laser beam
technology.

3D-Dithered Ortho-Pictures: 3D Models from Independent 2D Images

213

Figure 10 : A portrait is matched with randomly spread text etched in one 3D cube of glass.

We presented algorithms to derive the necessary set of points to 3D dither two orthogonal 2D images.
Clearly this work can be extended in a variety of direction, having more than two images dithered together.
Other directions of extending this work will be to relax the strict one-to-one matching, and the support of
colors, although contemporary glass etching technology barely supports two colors.

6 Acknowledgments

This work was supported in part by the ISRAEL SCIENCE FOUNDATION (grant No.278/13). I would like
to thank Tomer Vromen for implementing the Hungarian algorithm. I would also like to thank Lev Dvorkin
and Gregory Gisinsky for their help in making the real tangible glass cubes.

References

[1] Moire patterns. http://en.wikipedia.org/wiki/Moire pattern.
[2] AGAM, Y. http://en.wikipedia.org/wiki/Yaacov Agam.
[3] AIEX, R. M., RESENDE, M. G. C., PARDALOS, P. M., AND TORALDO, G. Grasp with path relinking for

three-index assignment. INFORMS Journal on Computing 17 (2005), 224–247.
[4] ALEXA, M., AND MATUSIK, W. Reliefs as images. In ACM SIGGRAPH 2010 papers (New York, NY, USA,

2010), SIGGRAPH ’10, ACM, pp. 60:1–60:7.
[5] CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction to Algorithms. The MIT Press, 2009.
[6] ELBER, G. “Beyond Escher for Real” project, 2002. http://www.cs.technion.ac.il/∼gershon/BeyondEscherForReal.
[7] ELBER, G. Ortho-pictures: 3d objects from independent 2d data sets. In Advanced in Architectual Geometry

(Vienna, 2010), Springer-Verlag, pp. 175–192.
[8] FLOYD, R. W., AND STEINBERG, L. An Adaptive Algorithm for Spatial Greyscale. Proceedings of the Society

for Information Display 17, 2 (1976), 75–77.
[9] FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F. Fundamentals of Interactive Computer

Graphics. Addison-Wesley Publishing Company, second edition, 1990.
[10] FUKUDA, S. http://en.wikipedia.org/wiki/Shigeo Fukuda.
[11] IRIT. The irit geometric modeling environment 2010. http://www.cs.technion.ac.il/∼irit.
[12] LOU, Q., AND STUCKI, P. Fundamentals of 3d halftoning. In Electronic Publishing, Artistic Imaging, and

Digital Typography. Lecture Notes in Computer Science (1998), Springer, pp. 224–239.
[13] MITRA, N. J., AND PAULY, M. Shadow art. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers (New

York, NY, USA, 2009), ACM, pp. 1–7.
[14] RAETZ, M. http://www.crownpoint.com/artists/raetz.
[15] SELA, G., AND ELBER, G. Generation of view dependent models using free form deformation. The Visual

Computer 23 (2007), 219–229.
[16] TABARY, F. http://www.francistabary.com.

Elber

214

http://en.wikipedia.org/wiki/Moire_pattern
http://en.wikipedia.org/wiki/Yaacov_Agam
http://www.cs.technion.ac.il/~gershon/BeyondEscherForReal
http://en.wikipedia.org/wiki/Shigeo_Fukuda
http://www.cs.technion.ac.il/~irit
http://www.crownpoint.com/artists/raetz
http://www.francistabary.com

	Introduction
	Previous Work
	Algorithm
	Pixel–Pixel Matching
	Row–Row Matching
	Image–Image Matching

	Possible Extensions
	Additional Examples and Conclusions
	Acknowledgments

