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 Abstract 
 

Among the most recognizable sport ball designs are soccer balls with twelve black pentagons and twenty white 

hexagons. However, soccer ball manufacturers are now exploring a wide variety of new patterns for both their panel 

designs and graphics. This paper surveys many existing soccer ball designs; it hopes to show how varied they have 

become and suggests that these designs may serve as an inspiration for other spherical art. Also, this paper promotes 

modern soccer balls as ideal toy examples to learn and teach various branches of spherical mathematics such as 

spherical symmetry, group theory, and tessellations. 

 

 Introduction 
 

Many sports balls are assembled from flat panels of material in such a way as to achieve a desired curvature 

and they often have iconic panel arrangements. For instance, the panel layouts in Figure 1 can effectively 

be described as ‘like a baseball’, ‘a beach ball’, or ‘a volleyball’ respectively. And certainly when one says 

‘like a soccer1 ball’, the iconic soccer ball (Fig.2) with twelve black pentagons surrounded by twenty white 

hexagons comes to mind. Yet a look at soccer balls today will show a proliferation of different soccer ball 

designs, so many that it is difficult to even spot this classic soccer ball. It would seem that graphic designers 

and ball manufacturers are striving to outdo one another by exploring the geometric patterns that can be 

made on a sphere and by searching for the next unique spherical pattern. You may look ahead right now to 

Figure 5 to see this wide variety of designs. 

This paper aims to showcase these new patterns. In order to focus on the artistic and mathematical 

aspects of modern soccer balls, this paper concerns itself with visual developments only: namely the designs 

of the panels, grooves, and printed graphics. Other design considerations such as how a moving ball appears 

to a player or how it behaves when it is kicked are not discussed. 

                                                      
1 Although the sport is more often called ‘football’ outside of the United States, this paper uses the unambiguous (and 

originally British) term ‘soccer’. 

    

Figure 1: Iconic panel layouts of a baseball, a beach ball, and a volleyball. Figure 2: The classic 

soccer ball design. 
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This paper also aims to promote soccer balls as mathematical objects for study. Just as the classic 

soccer ball can be used as shorthand for a ‘truncated icosahedron’ or ‘icosahedral symmetry’, modern soccer 

ball designs can also serve as suitable mental models for their own spherical patterns and mathematical 

concepts. In a workshop at Bridges 2012 [8], Yackel discussed the pedagogical benefits of temari balls as 

objects of mathematical investigation. Modern soccer balls can also be studied in this same vein 

conveniently and at little cost. For instance, a visit to a local soccer field or store with a camera in hand 

might be enough. 

This paper is organized as follows: the next section will discuss the history of soccer ball designs and 

give some context as to what soccer balls have looked like in the past. Following that, we discuss various 

aspects of spherical mathematics, including especially a discussion of spherical symmetry that features a 

collection of many different designs. We finish by showing how soccer balls have a role as artistic objects 

as well as mathematical, and how they can serve as inspiration for some new spherical designs. 

 

 Background 
 

It is of course impossible to describe every soccer ball development here. So what follows is an abridged 

history of the visual aspects of soccer balls. Determining the priority of each graphical innovation would 

also be a difficult task and so the discussion in this section is limited to soccer ball designs with wide 

exposure due to major leagues and tournaments. Interested readers may see a visual history and many more 

examples by visiting online resources like the one maintained by Pesti [7]. 

By the early 20th century, soccer games were played with balls made of leather wrapped around an 

inflatable rubber bladder. There was no standard panel design but you could often see panels stitched 

together using the kind of panel arrangement that you might expect on a volleyball (Fig.3a).  

What many people find surprising is that the black pentagon / white hexagon design (Fig.3b) only 

became prevalent in the seventies, not before. Adidas used this design for the official soccer ball (called 

Adidas Telstar) for only two FIFA World Cup tournaments (1970 and 1974) before switching to a different 

graphic pattern. Despite this short tenure, the design became the iconic pattern that it is today, and the 

truncated icosahedron was established as the customary panel layout. It was customary but not completely 

ubiquitous; brands such as Mitre continued to use a volleyball-like panel arrangement. 

Although the truncated icosahedron panels were standard, manufacturers started printing different 

graphics on these panels which deviated from solid black and white. Different graphics were used for 

branding purposes: to distinguish different manufacturers, or to signify balls meant for specific tournaments 

or leagues. For instance, Adidas used the triangular “Tango” motif (Fig.3c) on their hexagons for many 

years. 

Soccer balls like the Nike Geo Merlin (Fig.3d) and the Adidas Fevernova (Fig.5f) appeared in 2000 

and 2002 respectively. These were a departure from earlier soccer balls by featuring differing, orientable 

     
(a) 1938 (b) 1970 (c) 1978 (d) 2000 (e) 2006 

Figure 3: Some notable designs of the last few decades. 
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panels on the same ball. The resulting graphics exhibited different kinds of symmetry than the underlying 

panels. (We discuss this way of reducing symmetry more in the next section).  

The latest ‘era’ begins with the official ball for the World Cup in 2006: the Adidas Teamgeist (Fig.3e). 

The Teamgeist was the first World Cup soccer ball since 1970 to feature a different panel design; the panel 

designs have been changing for World Cup soccer balls since. 

Other than some practical panel design considerations such as creating a ball’s curvature or affecting 

a soccer ball’s flight, modern soccer ball designers now have a much freer rein to design panels and 

graphics. For example the Adidas F50 ball (Fig.5n) has eight unique panel shapes. So with new panel shape 

possibilities – and with them more new graphics – there has been a creativity arms race of sorts, which 

gives us a perfect opportunity to appreciate these designs through a mathematical lens. 

 

 Mathematical Ideas 
 

The Truncated Icosahedron. One way to think of dividing the surface of a 

sphere is to start with a polyhedron and then inflate the faces to a sphere with 

a mathematical projection. The faces of the original polyhedron correspond to 

the panels of the ball. In the classic soccer ball’s case, we start with a truncated 

icosahedron (Fig.4). Thus the geometry of the classic soccer ball is neatly 

described as a spherical truncated icosahedron. 

The truncated icosahedron is one of the Archimedean solids which, as the 

name suggests, date back to antiquity. The shape belongs to another fascinating 

family of polyhedra: Goldberg polyhedra, which are well explained by 

Hart [4]. Goldberg polyhedra have twelve pentagons surrounded by a number 

of hexagons and can be classified by starting at one pentagon, counting the 

number of hexagons out, turning 60° and then counting to the next pentagon. 

Thus a dodecahedron is a “1,0” Goldberg polyhedron while the truncated icosahedron is a “1,1” Goldberg 

polyhedron. In this paper, we will use Hart’s notation by writing these as GP(1,0) or GP(1,1). 

A Collection of Spherical Symmetries. We now discuss the collection that we see in Figure 5. Like any 

collection, the criteria for including each item can be subjective. It would be completely valid, for instance, 

to collect soccer balls based on which spherical polyhedron they happen to be. It would also be valid to 

discuss soccer balls in terms of possible molecular analogues as Fan and Jin have done [3].  

As it is, our collection is classified according to different spherical symmetry classes. This 

classification is well suited to characterizing and understanding the kinds of patterns we can see on spheres 

and it affords us with many opportunities to discuss some interesting mathematics  

For the purposes of classifying the symmetry of soccer balls, subjective criteria include matters such 

as whether to ignore or to pay attention to: logos that are not part of a sphere-wide pattern, minor variations 

in the graphics, valves, seams, and grooves. At least for Figure 5, we ignore all of these matters.  

There are more choices to make for our spherical symmetry collection as there is a variety of notation 

we could choose from. The orbifold notation described by Conway, Burgiel, and Goodman-Strauss [1] is 

accessible to anyone with a surface-level (pun intended) understanding of mathematics. We will use this 

notation to be precise more than to elucidate. I encourage anyone who wishes to learn more to look up this 

text. For now, we can describe some of the basics.  

A brief, but far from complete description regarding the classification of spherical symmetries follows. 

The first things to look for are planes of reflections and to identify where these planes meet (called 

  

 

Figure 4: A truncated 

icosahedron. 
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(a) *532 (b) *432 (c) *332 (d) 532 

   
(e) 432 (f) 332 (g) 3*2 

 

 

  
(h) *22N, (N=4) (i) *NN (j) 2*N, (N=3) (k) N*, (N=2) 

 

  
(ℓ) N× (m) 22N, (N=5) (n) NN, (N=3) 

    
(o) O(3) (p) D∞ (q) C∞ (r) 1 

Figure 5: (Mostly) soccer balls showing: twelve of the fourteen finite spherical symmetries (a-n); three 

types of infinite symmetry (o-q); and one with no symmetry except the identity (r). 
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kaleidoscopic points). The next thing to look for are the centers of rotations that are not kaleidoscopic 

points. These are points or axes of the sphere about which a pattern can be rotated onto itself. Finally we 

look for glide reflections. These are symmetries that combine both a rotation and a reflection in one step. 

Orbifold notation starts by listing the order of any unique rotational symmetries. Then, if there are any, it 

lists the order of any unique kaleidoscopic points after a * symbol. Finally, a × symbol at the end denotes 

that there is a glide reflection. 

Kaleidoscopic points, centers of rotation, and glide reflections combine together on the sphere in a 

finite number of ways, fourteen in fact. We can describe each while referring to its representative spot in 

Figure 5. We start off with three symmetries that correspond to the icosahedron, the octahedron and the 

tetrahedron, each printed with a face with kaleidoscopic symmetry (Fig.5a-c). The next three are the same 

but with only rotationally symmetric faces (Fig.5d-f). Next, there is a special tetrahedral symmetry with 

both kaleidoscopic points and centers of rotation known as pyritohedral symmetry (Fig.5g). There are seven 

spherical symmetries that correspond to the seven frieze patterns wrapped around a sphere, (Fig.5h-n). 

These are the fourteen, but I have also included three more infinite symmetries which correspond to a blank 

sphere, a cylinder, and a cone (Fig.5o-q). Finally, we see a soccer ball with no symmetry other than the 

identity (Fig.5r). 

Such a set of soccer balls can serve well as a visual cheat-sheet for the various types of spherical 

symmetry. The personality of each ball design can help with the memorization. For instance: “What did the 

spherical symmetry *332 look like again? Oh yes, it is the Adidas Jabulani.” 

The collection is not perfect or complete. First of all, there is a non-soccer ball: a volleyball design 

with symmetry N* (Fig.5k). Also, you may have noticed that I have not found good candidates for spherical 

symmetries of the form N× or *NN (Fig.5i,ℓ). So if you see any soccer balls with these symmetry types in 

the wild, please let me know! In the meantime, Figure 11 shows some mock examples.  

Icosahedral Soccer Balls: Manufacturers can keep their existing panel designs but still have a new look 

by just changing the graphics that are printed on the panels. As a consequence, many designs continue to 

exhibit icosahedral symmetry. To design a soccer ball with icosahedral symmetry, a designer merely has to 

create the graphics of the fundamental domain. A fundamental domain is a smallest region that can cover 

the entire sphere after reflecting (or rotating etc.) through any of the available symmetries. 

Figure 6 shows eight different icosahedral patterns along with their corresponding fundamental 

domains. Let us look at these various designs with a mathematical eye. For instance, the Adidas Tango 

(Fig.6b) uses the classic panel design (Fig.6a) but the negative-spaces are white circles in a dodecahedron 

pattern. Thus the Tango could make a good model for a classroom demonstration about the connections 

between dodecahedrons and icosahedral symmetry.  

A Puma King II (Fig.6d) shows a panel design achieved by enlarging the pentagons of a truncated 

icosahedron. The hexagons are no longer regular, but the seams allow for a fascinating Temari-like graphic 

with six great circles each touching ten pentagons. The Mikasa ball (Fig.6e) prints an equilateral triangle 

on each of its hexagonal panels and also displays six great circles touching ten pentagons. On the other 

hand, the Adidas Champions League ball (Fig.6c) features a star motif overlaid on top of each pentagon. 

However, here we see ten great circles each touching six stars!  

The last icosahedral pattern to discuss is the black outlines of the Nike Ordem 3 after ignoring its 

white-to-pink gradient (Fig.6f). Although it appears to be made from 72 small panels, there are grooves in 

the panels that only look like seams. The seam pattern is the spherical dodecahedron (Fig.6g) also known 

as GP(1,0). Recall GP(1,0) denotes a “1,0” Goldberg polyhedron. Additionally on the Nike Ordem, we can 

see that the groove pattern is a GP(2,0) (Fig.6h). As you can see, this GP(2,0) design could easily be 

mistaken for the GP(1,1) classic soccer ball design. We can only wonder if the designers were aware of 

these connections. Whatever the case, from now on, taking the GP(2,0) for a soccer ball is no longer a 

mistake! 

Soccer Ball Symmetry

155



Symmetry Subgroups: Some soccer balls are able to demonstrate yet another mathematical concept: the 

idea of subgroups; especially how subgroups might be called out using color symmetry. This section 

presents a handful of specific soccer balls in order to show this ability. 

In the discussions above, we have mostly looked at the printed graphics of a soccer ball. But a soccer 

ball can demonstrate that one class of spherical symmetry is a subgroup of another by looking at its panel 

design first, and then either considering or not considering the graphics. Take for example the Adidas 

Fevernova (Fig.5f). Its panel design has a *532 symmetry. Yet, when you take graphics into account, the 

symmetry type becomes 332, showing that 332 is a subgroup of *532. As another example, the Nike 

Ordem 2 (Fig.5m) shows that 225 is also a subgroup of *532. An important condition in both of these 

examples is to ensure that the panels (the group) follow at least the same symmetries as the graphics (the 

subgroup) – otherwise any two symmetries could be superimposed to get this result. 

The Adidas Brazuca (Fig.7) adds an additional subtlety, that of color symmetry. Readers of a black 

and white version of this paper may want to find a colored image of one. The Brazuca’s panels are identical 

in shape and details except they are colored differently. Ignoring color, its graphics have a 432 symmetry. 

If we were to consider the colors as unique from each other, we get 222 symmetry. Color symmetry, on the 

other hand is a symmetry that would allow all the panels of one color to map completely to another color, 

essentially permuting sets of colors. With this definition, the color symmetry of the Brazuca ball is back 

to 432. That is, no symmetry from the original group will break the color symmetry condition. Try it. 

A new soccer ball design, the Adidas Conext 15 (Fig.8) reuses the seam pattern of the Brazuca, but 

has different graphics. What is different in this case is that the graphics themselves (not merely their color) 

lead to a 222 symmetry group. I encourage the reader to find this ball in person because photos of spheres 

    
(a) Classic (b) Adidas Tango (c) Adidas Champions 

League 

(d) Puma King II 

    
(e) Mikasa (f) Nike Ordem 3 (g) Dodecahedron (h) Goldberg 2,0 

Figure 6: Icosahedral patterns and their fundamental domains. 
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with 222 symmetry do not show the symmetries very well and are more difficult to identify. Figure 9 shows 

more examples of these and I find that I am always initially stumped, then delighted when I recognize one. 

 

Spherical Tessellations. The Brazuca ball shows another mathematical avenue for exploration, that of 

tessellations on spheres. This ball can be thought of, in fact, as a modified spherical cube where each edge 

has been replaced by an S-shaped curve. Replacing the straight edges of polyhedra with S-shaped ones 

when done properly, results in better curvature. This idea is well described by Delp and Thurston [2]. There 

is more to be said about spherical tessellations as they relate to soccer balls, (more to be said, for that matter, 

about spherical mathematics in general), but for now, the mathematical discussion will have to be concluded 

with the suggestion that many properties of tessellations in the plane apply very well to tessellations on the 

sphere. 

 

 Artistic Ideas 
 

It would be a shame to gain a better understanding of spherical mathematics and not be able to put it to 

some creative use. This section shows some projects that soccer ball mathematics have inspired. 

To start, the most natural art project I can think of is to actually design a new soccer ball. The spherical 

tessellation topic above suggests an opportunity to make a tongue in cheek prediction about the next World 

Cup ball. Since the number of panels on World Cup soccer balls has decreased from 32 to 14 to 8 to 6, I 

thought a 4 panel spherical tetrahedron where each straight edge is replaced with a double-spiral could 

work. The result is a ball made of four triskelion shaped panels (Fig.10a). As an added bonus, the space-

filling nature of the spiral edge does well to provide the needed curvature for non-stretchy materials such 

as paper for a nice papercraft project. Figure 11 shows two new graphical designs overlaid on the classic 

panels. They are included here as suggestions for the missing soccer ball symmetries of Figure 5. 

 

 

     
Figure 7: Brazuca. Figure 8: Conext 15. Figure 9: More soccer balls exhibiting 222 symmetry. 

 

 

   

Figure 10: Four triskelion shaped panels. Figure 11: (a) N×, (N=5); (b) *NN, (N=3). 

× 4 = 

(a) (b) 
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I have been inspired by the TSP art of Bosch and Kaplan [6] enough to create my own spherical version 

using the classic soccer ball pattern as a base image (Fig.12). I delight in thinking that every time the 

travelling salesman visits one of the twelve pentagonal islands, he is faced with a Bridges-of-Königsberg-

like problem. 

Many of the topics raised in this paper can also be explored on Temari balls. I have not seen any 

Temari balls directly inspired by a non-classic soccer ball yet, but I believe this is an idea that is well worth 

exploring in the future. 

I finish by mentioning an opportunity to have some fun similar to that of a workshop by Hart [5]. 

Choose a soccer ball with a symmetry that you like, and mark out the spherical symmetry’s fundamental 

domain. Then draw some graphics or put some imagery on it (virtually or not). If you can find the means, 

repeat the pattern according to the soccer ball’s symmetries. Doing so will showcase some beautiful, orderly 

repetitions – in much the same way paper snowflakes do. I’ve written a program to duplicate a drawing by 

Evan Swart of a monster named Miro onto a virtual soccer ball using *532 symmetry (Fig.13). 

  

 Concluding Remarks 
 

While this paper has not revealed any new mathematics, I hope to have conveyed to the reader that soccer 

balls are ideally suited for many kinds of investigations and studies regarding spherical mathematics. 

Some figures were cropped from photos by Warren Rohner (Fig.5d,f) and Christos Vittoratos (Fig.3a) 

and used under a Creative Commons license (CC By-SA 2.0). Digital illustrations were used instead of 

photos when image rights for existing designs were not available (Fig.5k,6e,f). 
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Figure 12: Spherical TSP Art. Figure 13: “Sphero Miro” by Evan Swart. 
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