
Sources of Flow as Sources of Symmetry:
Divergence Patterns of Sinusoidal Vector Fields

Judy Holdener and Marie Snipes
Dept. of Mathematics and Statistics, Kenyon College

201 N College Ave, Gambier, OH 43022, USA
holdenerj@kenyon.edu and snipesm@kenyon.edu

Abstract
Here we create two-dimensional black and white symmetry patterns by coloring sources in a sinusoidal vector field
in white and sinks in black. We focus on vector fields of the form F⃗ (x, y) = sin(ax) cos(by)̂i+ sin(cy) cos(dx)ĵ,
where a, b, c, d ∈ N, because of the interesting divergence symmetries such fields produce.

Introduction

Given a vector field F⃗ (x, y) = P (x, y)̂i+Q(x, y)ĵ, where î and ĵ are the standard basis vectors of R2, then
the divergence of F⃗ is the scalar quantity

divF⃗ (x, y) = ∇ · F =
∂P

∂x
(x, y) +

∂Q

∂y
(x, y).

Interpreting F⃗ as the velocity field of a fluid flow, divF⃗ measures the tendency of a fluid to diverge from
a point. If divF⃗ (x0, y0) > 0, then (x0, y0) is a source of new fluid; if divF⃗ (x0, y0) < 0, then (x0, y0)
is a sink of old fluid; and if divF⃗ (x0, y0) = 0, then F⃗ is incompressible at (x0, y0). Interestingly, it is
often difficult to identify the locations of sources (or sinks) in a vector field by simply looking for points at
which the flow radiates outward (or inward) in the field. To illustrate, consider the vector field F⃗ (x, y) =
sin(2x) cos(5y)̂i+sin(2y) cos(5x)ĵ plotted over the region [−π, π]× [−π, π] ⊂ R2 in Figure 1 (left). While
the plot clearly indicates a source of new fluid at the origin, it falls short of suggesting the true nature of the
intricate divergence pattern revealed when the sources are colored in white and the sinks in black (as in
Figure 1 (right)).

Figure 1 : The vector field F⃗ (x, y) = sin(2x) cos(5y)̂i + sin(2y) cos(5x)ĵ (left) with vectors
rescaled using MAPLE’s “fieldstrength = log” option and divF (right) over [−π, π]× [−π, π]

Divergence patterns of vector fields of the form F⃗ (x, y) = sin(ax) cos(by)̂i+sin(cy) cos(dx)ĵ (where
a, b, c, d ∈ N) display a wide variety of interesting and complex patterns. (See Figure 2.) Since div F⃗ (x, y) =
a cos(ax) cos(by) + c cos(cy) cos(dx) = 0, the periodicity of the cosine function ensures that divF⃗ (x, y) =
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divF⃗
(
x+ 2π

gcd(a,d)k, y +
2π

gcd(b,c) l
)

for all integers k and l, and since cosine is an even function, divF⃗ (−x, y)

= divF⃗ (x, y) = divF⃗ (x,−y). Hence all of the divergence patterns we consider have rectangular fundamen-
tal regions and reflection axes in both the vertical and horizontal directions. Because divF⃗ (−x,−y) =
divF⃗ (x, y), all such patterns also exhibit rotational symmetry with a 180◦ angle of rotation. If a = c and
b = d, or if a = b and c = d, the divergence patterns also exhibit 90◦ rotational symmetry.

Lines of Incompression

Clearly, the boundary curves separating the black regions from the white regions consist of points at which
the divergence is zero. We call such points points of incompression in the vector field. Examining Figure 2,
we see that some divergence patterns contain vertical lines of incompression (e.g., (i), (iv), and (x)) while
others contain horizontal lines of incompression (e.g., (i), (vii), and (x)). Still others contain neither. As the
next theorem shows, the existence of such lines is related to the maximum power of 2 dividing the integers
a, b, c, and d. Define ν2(n) := max{ν ∈ N : 2ν |n}; ν2(n) is called the 2-adic valuation of the natural
number n.

Theorem 1. A vector field of the form F⃗ (x, y) = sin(ax) cos(by)̂i + sin(cy) cos(dx)ĵ, with a, b, c,
d ∈ N such that a ̸= d and b ̸= c has vertical lines of incompression if and only if ν2(a) = ν2(d), in which
case the lines occur at x = 1

gcd(a,d)(
π
2 +Nπ) for all N ∈ Z. F⃗ has horizontal lines of incompression if and

only if ν2(b) = ν2(c), in which case the lines occur at y = 1
gcd(b,c)(

π
2 +Nπ) for all N ∈ Z.

Proof sketch. Note that vertical lines of incompression occur at x0 when for all y, div F⃗ (x0, y) =
a cos(ax0) cos(by) + c cos(cy) cos(dx0) = 0, which happens if and only if either

cos(ax0) = cos(dx0) = 0, or for all y,
cos(ax0)

cos(dx0)
= − c

a

cos(cy)

cos(by)
.

Solving this system yields the desired result for vertical lines; the proof for horizontal lines is analogous. �
Remark. If either a = d or b = c then the divergence pattern is a rectangular grid (e.g., Figure 2 (x)).
The existence of diagonal lines of incompression (as exhibited in patterns (ii) and (v) in Figure 2) can

also be understood using Theorem 1. To illustrate, consider patterns (i) and (ii) in Figure 3 below. These
divergence patterns look suspiciously similar to patterns (ii) and (v) of Figure 2, and indeed, there is a close
relationship between them. Defining F⃗a,b(x̄) := a cos(ax) cos(by)+a cos(ay) cos(bx), where x̄ = [ xy ], and

letting M be the matrix M =
√
2/2

[√
2/2 −

√
2/2√

2/2
√
2/2

]
, then an application of the “product to sum” identity for

cosine
(
cos(θ) cos(ϕ) = cos(θ−ϕ)+cos(θ+ϕ)

2

)
quickly yields the identity

div F⃗a,b(Mx̄) =
2a

b− a
divF⃗ b−a

2
,a+b

2
(x̄). (1)

If a = 1 and b = 5, for example, then divF⃗1,5(Mx̄) = 1
2divF⃗2,3(x̄), and because v2(1) = v2(5), F⃗1,5

exhibits horizontal and vertical lines of incompression corresponding to the diagonal lines of incompression
exhibited by F⃗2,3.

Because A = b−a
2 , B = a+b

2 if and only if b = A + B, a = B − A, Identity (1) can be written
equivalently as divF⃗A,B(x̄) = A

B−A div F⃗B−A,A+B(Ax̄), and we conclude that F⃗a,b has diagonal lines of
incompression if and only if F⃗b−a,a+b has horizontal and vertical lines of incompression. Hence Theorem 1
ensures that F⃗a,b has diagonal lines of incompression if and only if ν2(b − a) = ν2(a + b). As it turns out,
it is not possible to find a vector field of the form F⃗a,b having neither diagonal nor horizontal and vertical
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Figure 2 : The divergence patterns for twelve vector fields of the form F⃗ (x, y) =
sin(ax) cos(by)̂i+ sin(cy) cos(dx)ĵ, over [−2π, 2π]× [−2π, 2π].

Sources of Flow as Sources of Symmetry: Divergence Patterns of Sinusoidal Vector Fields

411



Figure 3 : The divergence patterns forF⃗1,5 (left) and F⃗3,7 (right) are scaled rotations of the diver-
gence patterns for F⃗2,3 and F⃗2,5 illustrated in Figure 2 ii) and v)

lines of incompression. If F⃗a,b fails to have horizontal and vertical lines of incompression, then Theorem
1 implies ν2(a) ̸= ν2(b). Assuming ν2(a) = k, ν2(b) = l with k < l, it is not difficult to show that
ν2(b− a) = ν2(a+ b) = k, meaning F⃗a,b has diagonal lines of incompression.

Conclusions

Black and white geometric patterns are ubiquitous in contemporary art and design. On wall art, clothing,
jewelry, pottery, and even tattoos, one doesn’t have to look far to find them. Further exploration of our
divergence patterns could include an examination of where such patterns have emerged in the art world. As
Figure 4 illustrates, the Ipanema sidewalk in Rio de Janeiro dons a symmetric pattern with notable similarities
to our patterns.

Figure 4 : The Ipanema beach sidewalk in Rio de Janeiro, Brazil exhibits a black and
white pattern with symmetries reminiscent of some divergence flow patterns. (Left photo by
http: // www. 123rf. com/ profile_ marchello74 ; right photo by Radek Tezaur.)

Future work might also include further study into the geometric features of these patterns. It would
be interesting to study, for example, the topological connectedness of the black and white regions, and the
number of components meeting at a point. More generally, what patterns are possible? Additionally, one
could expand our investigation to vector fields other than the sinusoidal fields considered here.
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