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Abstract 

This paper reports on the application of some historical interlocking patterns for the embellishment of the 

regular polyhedra (Platonic and Kepler-Poinsot solids).  Such patterning can be extended to cover surfaces 

of some other convex and non-convex solids. In this regard, first the Shamseh n/k star polygon method and 

the radial grid method will be employed, and step-by-step geometric constructions will be demonstrated, 

then the girih tile modularity method will be used to explore more patterning designs.  Then, the girih tile 

modularity is used to explore more patterning designs.  

 

  

1. Introduction 

The regular polyhedra are highly organized structures that possess the greatest possible symmetry among 

all polyhedra, which makes them aesthetically pleasing. These solids have connected numerous 

disciplines including astronomy, philosophy, and art through the centuries.  The five that are convex are 

the Platonic solids and the four that are not convex are the Kepler-Poinsot solids.  They admit the 

properties that for each (a) all faces are congruent regular polygons (convex or non-convex), and (b) the 

arrangements of polygons about the vertices are all alike.   

Platonic solids were known to humans much earlier than the time of Plato. On carved stones (dated 

approximately 2000 BCE) that have been discovered in Scotland, some are carved with lines 

corresponding to the edges of regular polyhedra. Icosahedral dice were used by the ancient Egyptians.  

There are many small bronze dodecahedra that were discovered from the time of Romans of the second to 

fourth century that are decorated with spheroids at each vertex and have circular holes in each face.  

Evidence shows that Pythagoreans knew about the regular solids of cube, tetrahedron, and dodecahedron.  

A later Greek mathematician, Theatetus (415 - 369 BCE) has been credited for developing a general 

theory of regular polyhedra and adding the octahedron and icosahedron to solids that were known earlier. 

The name Platonic solids for regular polyhedra comes from the Greek philosopher Plato (427 - 347 BCE), 

who associated them with the “elements” and the cosmos in his book Timaeus. “Elements,” in ancient 

beliefs, were the four objects that constructed the physical world; these elements are fire, air, earth, and 

water.   

There are four more regular polyhedra that are not convex.  Johannes Kepler (1571-1630 CE) discovered 

two of them, the small stellated dodecahedron and the great stellated dodecahedron. Later, Lovis Poinsot 

(1777 – 1859 CE) completed the work by finding the other two non-convex regular polyhedra of the great 

icosahedron, and the great dodecahedron.  For a comprehensive treatment and for references to the 

extensive literature on solids one may refer to the online resource Virtual Polyhedra – The Encyclopedia 

of Polyhedra [3]. 
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The Schläfli Symbols (n, m) in the following table present the relationships between the n-gon, as the face 

of the regular polyhedron, and m, which is the number of faces around a vertex for that polyhedron.  By a 

regular pentagram in this table, we mean a 5/2 star polygon, which is the regular non-convex pentagon.  

Figure 1 demonstrates the regular solids. 
 

Polyhedron Schläfli Symbol Complete Face Visible Face 

Tetrahedron (3, 3) Equilateral Triangle Equilateral Triangle 

Octahedron (3,4) Equilateral Triangle Equilateral Triangle 

Icosahedron (3, 5) Equilateral Triangle Equilateral Triangle 

Hexahedron (Cube) (4, 3) Square Square 

Dodecahedron (5, 3) Regular Pentagon Regular Pentagon 

Small Stellated Dodecahedron (5/2, 5) Regular Pentagram Golden Triangle 

Great Stellated Dodecahedron (5/2, 3) Regular Pentagram Golden Triangle 

Great Icosahedron (3, 5/2) Equilateral Triangle  Two triangles in Fig  12 

Great Dodecahedron (5, 5/2) Regular Pentagon Obtuse Golden Triangle 

Table1: The regular polyhedra 

 

 
Figure 1: Top; tetrahedron, octahedron, icosahedron, hexahedron, and dodecahedron. Bottom; small 

stellated dodecahedron, great stellated dodecahedron, great icosahedron, and great dodecahedron 

The goal of this article is to present methods for the decoration of the regular polyhedra using Persian 

girih patterns.  Girih (knot in Persian) refers to a (usually) rectangular region consisting of a fundamental 

region with bilateral or rotational symmetry, for a pattern that includes the nodal points of the web-like 

geometric grid system and construction lines for generating the pattern. 
 

   

2. Some Examples in Patterning Solids 

There are numerous interesting examples of patterning regular solids.  The left image in Figure 2 exhibits 

the Screened Icosahedron created by artist Phil Webster from Pittsfield, Massachusetts.  The artwork was 

presented at the 2013 Bridges Conference Art Exhibition, Enschede, the Netherlands [2]. The right image 

in Figure 2, the ornamented great dodecahedron created by Richard Kallweit, an artist from Bethany, 

Connecticut, was presented at the 2014 Joint Mathematics Meeting Art Exhibition, Baltimore, Maryland, 

USA [2].  
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Figure 2: Screened Icosahedron and embellished Great Dodecahedron 

Captured Worlds by artist Dick Termes (http://termespheres.com) is a set of Platonic Solids that are 

decorated with fanciful scenes rendered in six-point perspective, which allows an entire three-dimensional 

surrounding to be projected onto the polyhedra (left in Figure 3).  B.G. Thomas and M.A. Hann from the 

School of Design, University of Leeds, United Kingdom, used the projections from duals to the surface of 

the Platonic solids, in particular the dodecahedron, in order to decorate the faces of the polyhedra (right in 

Figure 3) [10].   

                 

Figure 3: Captured Worlds by artist Dick Termes, and an example of the projection of the pattern on the 

cube to the dodecahedron by B.G. Thomas and M.A. Hann  

During a workshop in the 2010 Bridges Pécs Conference, Hungary, E.B. Meenan of the School of 

Education and B.G. Thomas of the School of Design, University of Leeds, UK, guided their workshop 

participants to a process of creating Escher-type tessellations.  Then they used presented ideas to extend 

the workshop into three-dimensions with pull-up Platonic solids constructions that were patterned with 

Escher’s designs [6]. 

 

 

3. Historical Patterns for Embellishment of Solids 

It is important to note that since a pattern on one face of an ornamented solid should appear on all faces 

identically, all the pattern lines should be in complete coordination and harmony with each other in such a 

way that they can continue from one face to another without any ending or interruption.     
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There are only a limited number of scrolls (tumār) and booklets (daftar) from the past that recorded 

patterns and designs for the decorations of the surfaces of buildings, or as geometric experimentations of 

interlocking star-polygon patterns.  But in general, such designs come with no instruction about the steps 

of the geometric construction using traditional tools of compass and straightedge or any other tools.  

 

3.1. Patterning Platonic Solids. To decorate regular polyhedra using historical and traditional 

interlocking star polygonal patterns, one needs to search the documents for ornamented polygons of the 

equilateral triangle, square, and regular pentagon.  Beginning with the dodecahedron and its face, the 

regular pentagon, the author searched most of the available old documents for a decorated pentagon with 

the following specifications: 

 

(a) The center of the pentagon coincides with the center of a k/l star polygon that covers the central 

region of the pentagon. 

(b) The vertices coincide with the centers of the same or other k/l star polygons that cover corners of 

the pentagon.   

(c) Some segments connect star polygons together in a harmonious way to generate a single design.     

 

Mathematically speaking, if all the k/l star polygons that are used for ornamenting the pentagon are 

identical, then since each interior angle of the regular pentagon is 
       

 
  = 108, and since each vertex of 

the dodecahedron includes three copies of the pentagon, on a successful patterning, a type of star polygon 

will appear on each vertex that covers 324.   This means the k/ l star polygon on the center, which is an 

n-leaved rose that covers 360, should be constructed in a way that the number of degrees in each leaf 

divides both 360 and 324, as does their difference, 36. Therefore k should be equal to 5i, iN.  Hence, 

star polygons such as 5/l, 10/l, 15/l and so on will provide proper central designs for the pentagon (that 

will create concave star polygons of 3/l, 6/l, 9/l and … on the corners of the dodecahedron). 

 

      

Figure 4:  The decorated pentagon from the Mirza Akbar collection, and the ornamented pentagon 

created by the author based on the mathematics in the Mirza Akbar ornatemented pentagon    

There are many sources, including buildings of the past, that we can search for Persian traditional patterns 

and we may find many examples.  One source of interest for finding such a pattern was the Mirza Akbar 

Collection, which is housed at the Victoria & Albert Museum, London.  This collection consists of two 

architectural scrolls along with more than fifty designs that are mounted on cardboard.  The collection 
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was originally purchased for the South Kensington Museum (the precursor of the Victoria & Albert 

Museum) by Sir Caspar Purdon Clarke, Director of the Art Museum (Division of the Victoria and Albert 

Museum) 1896 – 1905 in Tehran, Iran, in 1876.  Purdon Clarke purchased them after the death of Mirza 

Akbar Khan who had been the Persian state architect of this period [7]. 

 

The left image in Figure 4 is from the Mirza Akbar collection.  As is seen, the constructed lines in this 

image are not accurate and the pattern looks like a draft.  Nevertheless, the design and the 10/3 star 

polygon at the center satisfy the aforementioned constraints.  The image on the right in Figure 4, which 

was created by the author, using the Geometer’s Sketchpad program, illustrates the same pattern but 

includes interwoven straps, which changes the symmetry group of the pattern from the dihedral group of 

order 10,    , to the cyclic group of order 5,   . 

 

Obviously, for the geometric construction of the pattern, there were no instructions in Mirza Akbar 

collection, so it was necessary to analyze it mathematically, to discover the construction steps.   

One should notice that the radius of the circumscribed circle of the pentagon in Figure 5, OA, which is the 

distance from the center of the pentagon to a vertex, is twice the radius of the circle that is the basis for 

the 10/3 star polygon at the center (AM = MO in the top left image in Figure 5).  The reason for this is that 

the two 10/3 star polygons, one at the center O and the other at the vertex A, are each others reflections 

under the tangent to the circle at point M (see the middle bottom image in Figure 5 that also includes a 

tangent to the circle at point N  that is necessary to be used as the reflection line, to complete the star). By 

following images from the top left to the bottom right a person may complete the design properly.      

 

Figure 5: The steps for the geometric composition of the Mirza Akbar ornamented pentagon 

The photographs in Figure 6 are from a workshop conducted by the author that was presented at the 

Istanbul Design Center.  The workshop was a part of a conference on geometric patterns in Islamic art 

that was scheduled during 23
rd

-29
th
 of September 2013 in Istanbul, Turkey.  The workshop included the 

construction of the dodecahedron using the Mirza Akbar ornamented pentagon. 
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Figure 6: Photographs from a workshop in the Istanbul Design Center in Turkey 

 

The next selected polygon for embellishment was the square.  It was not difficult to find a decorated 

square in the Mirza Akbar collection.  However, the design, as can be noted in the left image of Figure 7, 

was a very rough draft with no accuracy on any part of the design, showing only the type of polygons that 

constituted the structure, but nothing to assist a designer to determine the steps of the geometric 

constructions.  Searching a book by J. Bourgoin [1], plate 118 in this book exhibits the same structure, but 

the proportions are slighly different from sketch in the Mirza Akbar collections.  This book consists of 

190 geometric construction plates that appeared in the French edition, Les Eléments de l’art: le trait des 

entrelacs, Firmin-Didot et    , Paris, 1879.  The book does not provide step-by-step instructions for the  

geometric constructions.  Nevertheless, there are underlying circles and segments using thin dashed lines 

that are instrumental for forming such instructions.   

To form the instructions for the pattern illustrated in Figure 8, plate 118 was used but a few steps were 

changed, to be more in tune with the traditional approaches to complete the ornamented square in Figure 

7 (right image).    

       

Figure 7:  The decorated square from the Mirza Akbar collection, and the ornamented pentagon created 

by the author based on the types of tiles that constituted the Mirza Akbar square     
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The construction approach, the radial grid method, follows the steps that the mosaic designer 

Maheroannaqsh suggested for another pattern in his book [5].   

Divide the right angle A into six congruent angles by creating five rays that emanate from A. Choose an 

arbitrary point C on the third ray, counter-clockwise, and drop perpendiculars from C to the sides of angle 

A.   This results in the square ABCD, along with the five segments inside this rectangle, each with one 

endpoint at A, whose other endpoints are the intersections of the five rays with the two sides of BC and 

CD of square ABCD.  Consider C and the dashed segments as the 180 rotational symmetry of A and the 

five radial segments under center O.   Make a quarter of a circle with center at A and radius equal to 1/3 of 

AC.  We repeat all these and the future construction steps for C.  Two quarter circles can be constructed at 

B and D with radius congruent to the distance from B to the intersection of the first ray and BC.  The two 

right angles at B and D are divided each into four congruent angles.  The intersections of some new rays 

emanating from B and D and the previous constructed rays emanating from A and C, as are illustrated in 

the second top image, are the centers of the circles that are tangent to the sides of the square ABCD and 

some rays.  Dropping a perpendicular from the intersection of the quarter circle with center A and the fifth 

ray emanating from A to AB will result in finding some new points on other rays for the construction of a 

quarter of a 12-leaved star with center at A (the top right image).  With a similar approach one can 

construct one quarter of an 8-leaved star with center at B, as is illustrated in the first bottom image.  As is 

illustrated in the bottom middle image, some segments are constructed that connect the four stars in the 

four corners.  Morover, some other segments connect the intersections of the four small circles with the 

sides of ABCD.  The last part of the construction, as is seen in the bottom right imgae, is to complete the 

pattern. The right image in Figure 6 is the result of the reflection of this decorated square under the two 

sides of AB and AD. 

 
Figure 8: The steps for the geometric construction of the Mirza Akbar ornamented square 

 

For patterning the tetrahedron, octahedron, and icosahedron, one needs an ornamented equilateral 

triangle.  To follow the types of patterning in the pentagon and the square, a 12/4 star polygon was 

inscribed inside the given equailateral triangle.  Then similar to the steps in Figure 5, steps were taken to 

ornament the triangle (Figure 9).   
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Figure 9: The steps for the geometric construction of the ornamented triangle 

 

3.2. Patterning Kepler-Poinsot Solids. The faces of these solids are the regular pentagram 5/2 in Figure 

10, regular pentagon, and equilateral triangle.  However, faces cross each other and therefore, the physical 

models have visible faces that are different from the 

actual faces.  The visible faces of the physical models of 

(5/2, 5), (5/2, 3), and (5, 5/2) are either the golden 

triangle (ABD in Figure 10, an isosceles triangle with 

angles 72, 72, and 36 degrees) or an obtuse golden 

triangle (BDC or ADE in Figure 10, an isosceles 

triangle with angles 36, 36, and 108 degrees).  Therefore, 

for patterning the above three Kepler-Poinsot polyhedra, 

we need to ornament these two triangles.  

Figure 10:;The  regular pentagram 5/2, and the 

pentagon divided into the golden triangle and obtuse 

golden triangle 

 
Figure 11:  Ornamenting the golden triangle and the obtuse golden triangle using girih tiles 
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For this, the girih tile modularity method presented in [4] was used.  In [4] the authors proposed the 

possibility of the use of a set of tiles, called girih tiles (top left corner of Figure 11) by the medieval 

craftsmen, for the preliminary composition of the underlying pattern.  The pattern then would be covered 

by the glazed sâzeh tiles (top right corner of Figure 11) in the last stage. On the top right image in Figure 

11, we see the three girih tiles, which are used to compose the underlying pattern on the two triangles of 

the golden triangle and the obtuse golden triangle.  After finding the pattern, all line segments that 

constitute the girih tiles are discarded (see the two triangles in Figure 11).  Then the sâzeh tiles that are 

presented on the top right corner are used to cover the surface area. For a comprehensive explanation of 

this and other modularity methods the interested reader is referred to [8].    
 

                 
 

Figure 12: Dance of Stars I, the hexagon, bowtie, and the decagram, and the golden triangle  

Dance of Stars I in Figure 12 is one of the four Kepler-Poinsot solids, the small stellated dodecahedron 

that the author sculpted that has been ornamented by the sâzeh module tiles.  The girih tiles were used to 

create an artistic tessellation for adorning the surface area of the golden triangle.  Similar to panel 28 of 

the Topkapi scroll in Figure 13, the dashed outlines of the girih tiles were left untouched in the final 

tessellation. The author also included off-white rectilinear patterns that appear as additional small-brick 

pattern in the 12
th
 century decagonal Gunbad-i Kabud tomb tower in Maragha, Iran, as is shown in Figure 

13.  For the hexagon and bowtie girih tiles (middle column of images in Figure 12), these additional 

patterns posses internal two-fold rotational symmetry.  But then this symmetry was followed to create a 

ten-fold rotational symmetry, in order to cover the surface area of the decagonal tiles as well.  It is 

important to mention that the final tessellation had to conform to three essential rules: (1) Each vertex of 

the triangles had to be the center of the main motif of the tiling, the decagram; (2) The tessellation should 

be bilaterally symmetric, (3) The sides of the triangles should be the reflection lines of the motifs located 

on the edges.  Without a thorough mathematical analysis of the pattern, it would be extremely difficult, if 

not impossible, to create a satisfactory artistic solution.   
 

              
 

Figure 13: A rendering of plate 28 in the Topkapi Scroll, and the design on the Gunbad-i Kabud tomb 
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Similar to the previous star in Figure 12, Dance of Stars II and III in Figure 14 are the other two Kepler-

Poinsot solids, the great stellated dodecahedron, and great dodecahedron, which have been decorated by 

the sâzeh module tiles.   

 

     
Figure 14: Dance of Stars II-III, ornamented Great Stellated Dodecahedron and Great Dodecahedron 

The triangles that constitute the great icosahedron are 

different from the previous triangles, which were parts of 

the regular pentagon. So it is possible that we cannot adorn 

their surfaces using the sâzeh module tiles.  To construct the 

two triangles, we need to start with an equilateral triangle 

and divide the edges at the golden ratio points to create six 

new vertices on the edges.  We then connect them to make 

"the stellation pattern of the icosahedron" as illustrated in 

Figure 15 [11]. The two triangles 1 and 2 are the desired 

triangles (or 1 and  JGK, which is congruent to 2).  It 

remains an open question whether we can have a sâzeh 

module tiling solution or if such a solution is impossible.    

Figure 15: The stellation pattern of the icosahedron 
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