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Abstract
A regular surface is a closed genus g surface defined as the tubular neighbourhood of the edge graph of a regular
map. A regular map is a family of disc type polygons glued together to form a 2-manifold which is flag transitive.
The visualization of this highly symmetric surface is an intriguing and challenging problem. Unlike regular maps,
regular surfaces can always be visualized as 3D embeddings. In this paper, we introduce an algorithm to visualize the
regular surface formed around the tubular neighborhood of a regular map. Our algorithm takes as input the symmetry
group of a regular map and outputs a 3D realization of its regular surface. This surface can be interactively modified
and used as a target shape for other regular maps. As a result, we find new realizations of regular maps ranging from
genus 9 to 85.

1 Introduction

A simple way to understand regular maps is to go back to the Platonic solids. They are the simplest examples
of regular maps. They are built from regular polygons, glued at their edges with a uniform vertex figure. Ad-
ditionally, they have the property of being flag transitive. In other words, moving a face or a vertex or an
edge to another face or vertex or edge preserves all adjacency properties. Regular maps also exist for high
genus surfaces. On the torus, they are checker-board, triangular and honeycomb like tilings. On surfaces of
genus g ≥ 2, they are tilings of the hyperbolic space. They were first described by Coxeter [3] and later on
enumerated by Conder [2] in the form of symmetry group.

Lately, a lot of efforts have been made to visualize high genus regular maps as a closed surface [10,
11, 6, 12, 8] but none of them successfully find an automatic procedure. Nevertheless, the work of van
Wijk [6] is a huge source of inspiration and serves as guidance to this paper. To tackle the hard problem of
visualizing regular maps, we approach it with a different point of view by generating regular surfaces which
were implicitly introduced in [6].

A regular surface is a closed genus g surface de-
fined as the tubular neighbourhood of the edge
graph of a regular map. Unlike regular maps,
regular surfaces can always be embedded and
we provide in this paper all the ingredients to
achieve that. In [6], a regular surface is derived
from an already embedded regular map (in Fig-
ure 1 are examples of them). We relaxed this
constraint by generating directly the regular sur-
face from the planar realization of the regular
map. Figure 1 : Regular surfaces (transparent).

A regular map, following Conder [2], is denoted by Rg.i{p,q}, where g is the genus, i is a constant and
{p,q} is the Schläfi symbol of the tiling. The dual map is represented by Rg.i’{q, p}. In this paper, if not
explicitly stated, a regular map is denoted by Gpq. The symmetry group is the same as in Conder [2] and is
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denoted by Sym(Gpq). We denote the regular surface of a regular map by Sg. The mathematics required for
understanding the paper can be found in the following books: for symmetry groups, we use [3]; for surface
topology, we use [5]; and for hyperbolic geometry, we use [1, 9]. Nevertheless, we will try to make it as
intuitive as possible.

Algorithm overview: the main steps of our algorithm are summarized as follows:

1. Take a regular map Gpq, defined by its symmetry group Sym(Gpq), as input.
The list of all regular maps from genus 2 to 302, in the form of symmetry group, is listed in [2].

2. Enumerate all element representatives of Sym(Gpq).
This is done by using an advanced coset enumerator due to G. Havas and C. Ramsay [4] as explained
in Section 2.

3. Make a hyperbolic realization of Sym(Gpq) and find the correct identifications at the boundary.
Planar realization of regular maps are well understood and can be found in [6, 7, 8]. Finding the
correct identification at the boundary, on the other hand, have not yet been considered. We give a
detailed description in Section 3.

4. Take the edge graph of the realization and identify the edges at the boundary.
This makes the edge graph consistent but, unfortunately, induces a degenerate regular surface.

5. Define normals along the edge graph and apply a constrained physically based relaxation.
Normals define the torsion of the regular surface Sg and should be preserved. We use the physically
based relaxation procedure in [7, 8] to get smoothness and symmetry.

6. (Optional) Introduce a group structure on Sg and find matchings with other regular maps G′pq using
heuristics from [6].

7. (Optional) Visualize G′pq.
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Figure 2 : Construction of a regular surface using the torus map f for genus 1 regular maps (top),
and using step 4 and 5 for higher genus regular maps (bottom).

Basically, steps 1 to 5 do what one would do to find the edge graph of some regular maps on the torus.
These graphs are simply drawn on a flat rectangle and then mapped on the torus using the parametrization
function of the torus (see Figure 2 up). This function does step 4 and 5 automatically and hence the associated
tubular surface can be generated directly. For high genus regular maps, the flat rectangles are replaced by
hyperbolic 4g-gons with pairwise identified edges. There is no known smooth map which identifies the
edges of the 4g-gons to make the flat domain into a 3D surface. If such a map exists, then the problem of
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visualizing regular maps is solved. Step 4 does the mapping explicitly but only on the boundary edges (the
triangles are ignored) and step 5 allows an interactive manipulation of the resulting graphs (see Figure 2
down).

Steps 3 to 5 are the most important steps of our algorithm. To understand them, we need to understand
how symmetry groups act on a geometry and what are the possible geometric realizations of them. Step 4
is only combinatorial information, one can then use a good graph representation algorithm that will try to
render the combinatorial graph in 3D with properly separated edges and with as much symmetry as possible.

In the following Section, we give an intuitive introduction to groups and representations, then in Sec-
tion 3, we construct a topological representation of Gpq. This is realized in the Poincaré model of hyperbolic
space. In Section 4, we explain briefly our identification algorithm which is the first step to construct the
medial axis of Sg. In Section 5, we show how to construct the regular surface without any degeneration. And
finally, in Section 6, we use our algorithm to generate space models of regular maps. We call it targetless
realization of regular maps because, unlike van Wijk’s [6] cascade of mappings, our method does not need
an actual 3D realization of the target regular map. We can then generate a wide variety of 3D embedded
regular maps with as much symmetry as possible.

2 Groups and their Realizations

A group is a set with a well defined relation between its elements. A trivial example of a group is Z with
the operation + but, in general, a group can be anything: words, numbers, matrices, shapes, colors, abstract
objects, etc. If a group can be realized as a geometrical shape, then we say that this shape is a geometric
realization of the group and the group is the symmetry group of the shape. In Figure 3 are some examples of
geometric realization of groups.

Figure 3 : Examples of geometric realization of groups, from left to right: the Cubane with oc-
tahedral symmetry, the Rubik’s Cube group, a Wallpaper group and the Klein’s quartic (image
source: Wikipedia).

A regular map is a group but at the same time it is a surface. The Klein’s quartic (Figure 3) is an
example of regular map in its surface realization. The symmetry group of a regular map is denoted by
〈R,S,T |R(R,S,T )〉, which is a set of words containing only R, S and T , with a set of relations R(R,S,T )
between its elements. The symmetry group of the Klein quartic is given in Conder’s list [2] by〈

R,S,T | T 2,R−3,(RS)2,(RT )2,(ST )2,S−7,(RS−2)4〉 .
For example, R−3 = I in this group which implies that R−2 is the same as R. Hence, these relations tells
us exactly which element of the group corresponds to a given word. The software of Havas G. and Ramsay
C. [4] gives this correspondence. It takes a word as input and returns an element of the group which represents
this word.
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Our goal is now to find a geometrical realization of the group, first, as a triangular tiling in the hyperbolic
space and second as a closed 3D surface.

3 Topological Representation of High Genus Regular Maps

Let Gpq be a regular map of genus ≥ 2 whose symmetry group
is given by Sym(Gpq). This group can be realized as a triangular
tiling in the hyperbolic plane, obtained from a triangle M0N0O0
with corner angles (π/p,π/q,π/2) by setting R to be the rotation
of angle 2π/p around M0, S the rotation of angle 2π/q around
N0 and T the reflection across the edge M0N0 (see Figure 4). We
denote this tiling by Tri(Gpq). Each triangle of Tri(Gpq) is a geo-
metrical representation of an element of Sym(Gpq).
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Figure 4 : Tri(Gpq) and Line(Gpq).

To make Tri(Gpq) a topological closed surface, we need to make correct identifications for the triangles
at the boundary. This is similar to the representation of a torus as a rectangle with identified opposite edges
(see Figure 2). The correct identification at the boundary is obtained by finding the missing neighbour of
each triangle of Tri(Gpq) in Sym(Gpq) using the relations of the group as in Section 2. For example, in
Figure 5(a), triangle T does not have a neighbour in Tri(Gpq) which in this case should be S. The relations of
Sym(Gpq) imply that S and S−1R3 are the same. Since a triangle corresponding to S−1R3 exists in Tri(Gpq),
we identify their NO edges (blue lines). We proceed in the same way for all boundary triangles to obtain
finally a planar realization of the regular map. Figure 5(b) is an example of a topological representation of
the regular map R2.4{5,10} preserving flag transitivity.
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Figure 5 : Representation of Sym(R2.4) in the hyperbolic space: (a) without identification and (b)
with correct identifications.

Let ∆i be a triangle of Tri(Gpq) with corner vertex MiNiOi. We denote by Line(Gpq) the set of all NiOi

segments of Tri(Gpq) which is again a geometrical realization of Sym(Gpq). This group can be viewed as
a ”double covering” of the medial axis of the associated regular surface. It is represented by red dashed
segments and blue segments in Figure 5. In the topological representation, the boundary arrows show where
a triangle or a NO segment should be glued. We can use this information to make sure that an element
L ∈ Line(Gpq) has the same geometrical position as LS−1T . Once all the L and LS−1T have the same
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geometrical position, we can generate the regular surface by associating to each NO segment a half-tube
extending halfway to the middle of one of the tubular edges similar to [6].

4 Boundary Identification

The goal of this Section is to give the elements L and LS−1T ∈ Line(Gpq) (red dotted and blue segments
on the boundary) the same geometrical position. We do this by using the identifications induced from
Tri(Gpq). As stated in the previous section, only the segments of Line(Gpq) on the boundary triangle of
Tri(Gpq) need to be moved. We could also try to do the identification directly on the edges of Tri(Gpq) but
it is hard if not impossible to resolve the intersecting faces of the triangles after the identification. The iden-
tification is combinatorial and to obtain a reasonable 3D initial configuration of the graph, we choose the
Jemisphere model of hyperbolic space defined in [13]. The Jemisphere model is a hemisphere like model of
the hyperbolic space which is also conformal. Infinity is represented by the equator (Figure 7).
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Figure 6 : The process of identifying all elements L ∈ Line(MT ) to have the same geometrical
positions as LS−1T and vice versa. On the final shape, each red and blue line in state 1 are
pairwise identified.

Suppose, for example, that we want to identify a directed edge a with edge b. Define the tail of a to be
ta and tb the one of b. Find all segments of Line(Gpq) having ta as endpoint and move these vertices to the
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tail tb of b. In this process, only the endpoints of a are moved. We do the same for the head ha of a to the
head hb of b. Once both head and tail are matched, we update the geometrical position of a to be the one
of b. We iterate this process until all the boundary NO segments of Line(Gpq) are identified. Figure 6 is an
illustration of the overall process applied to Line(R2.4). It is only a conceptual illustration to show how the
identification is done. In state 1, only four elements of Line(Gpq) are pairwise at the the same geometrical
positions (dotted segments are adjacent to continuous segments). The rest need to be moved according to
the glueing procedure defined previously. The orange dots represent the edges to be identified. The red dots
represent edges to be removed or updated. The algorithm starts by identifying edge 0, first head to head and
then tail to tail. Once these are done (state 3), the red dotted line is updated to where it is identified. Then, it
continues with edges 1 and 2 with the same strategy. At state 10, there is only one step to be done since the
curve 3 is a loop.

1 2

3

0123

0

Figure 7 : R2.4 projected on the Jemisphere model (left) and the resulting identification applied
to Line(R2.4) on this model (right).

The input of the algorithm is the set of segments Line(Gpq) and the output is again Line(Gpq) but the
elements L and LS−1T have the same geometrical positions.

The identification does not depend on the order of the glueing. The resulting curves and loops are the
same. The only problem happens at the end of the identification where the ordering of the segments at the
nodes is not well-defined. If we try to derive the regular surface, it might result in a degenerate tubular surface
(see Figure 10). We solve this ambiguity in the next section.

5 Construction of the Regular Surface

The regular surface obtained by the tubification of the edge graph of a reg-
ular map Gpq is also a geometric realization of Sym(Gpq). It is derived by
associating to each element L ∈ Line(Gpq) a quarter-tube QL. The folding
of the quarter tubes depends on the corresponding element in Sym(Gpq). If
the element contains T (a continuous segment in Line(Gpq)), then it is folded
left. Otherwise, it is folded right. Here, left and right are defined according to
the normals from O to N. The geometrical construction of the quarter-tubes is
illustrated in Figure 8. The normals along each segment are interpolated from
the junctions.

Figure 8 : Construction of

the quarter tubes.

We call the resulting group Tub(Gpq). For all QL ∈ Tub(Gpq), QL and QLS−1T form a half tube. This is
possible due to the identification done previously. To have correct tube junctions at the nodes of Line(Gpq),
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it is necessary to have, additionally, each quarter tube QL adjacent to QLT . This is equivalent to having a
local ordering of each segment of Line(Gpq) at the nodes.

The local ordering at each node is obtained from Sym(Gpq). Suppose that we are at a node v which
is contained in the segments L0, . . . ,L2q−1 ∈ Line(MT ). The ordering of the segments, as in the hyperbolic
space, is reconstructed in a well defined plane at v. If L0 = L, then we must find a plane on which L1 =
LT,L2 = LS, . . . ,L2q−2 = LSq−1, and L2q−1 = LSq−1T . In our implementation, we uses this information as
a constraint and put Line(Gpq) in a spring relaxation procedure. An example of this relaxation procedure
is shown in Figure 5 for the case of Line(R2.4). The basic idea is to consider each vertex of the graph as
a charge particle attracted by its neighbors and repulsed by the other vertices. This simple physical system
gives symmetrical shape but can also get stuck in local minima. For more details on the implementation, we
refer to [7, 8]. The resulting tubular surface is illustrated in Figure 10.c.

Figure 9 : Spring relaxation of Line(R2.4) with the plane constraint at the junction.

Figure 10.b is an example of such a plane where q = 4. Figure 10.a is an example where the spring
relaxation is not constrained which induces a degenerate surface. The identification procedure does not
guarantee this orientation. Figure 10.c is an example of Line(Gpq) for which Tub(Gpq) does not have self-
intersections with a well defined tangent plane at the node.

v
L0 = L

L1 = LT

L2 = LS

L3 = LST

L4 = LS2

L5 = LS2T

L6 = LS3

L7 = LS3T

(a) Self intersection (b) Correct neighbouring at a node (c) Correct tube junction
Figure 10 : Wrong ordering at a junction may lead to a degeneracy of the regular surface. The
correct ordering is found on a suitable tangent plane.

6 Targetless Visualization of Regular Maps

Unlike regular maps, regular surfaces can always be visualized. One weak point of van Wijk’s approach [6]
is that the embedding of a regular surface depends on the embedding of the corresponding regular map. For
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example, the regular surface of the map R2.5{5,10} can be used as a space model of the map R5.8{4,20}
but if R2.5 is not embedded, so is R5.8. Our algorithm handles this case and depends only on the regular
surface of the target map, not the target map itself. In Figure 11 is our embedding of R5.8 together with its
dual.

Figure 11 : A realization of the regular map R5.8{4,20} (left) and its dual (right).

We find new realizations of regular maps by combining van Wijk’s heuristic [6] with our algorithm. For
the purpose of visualization, we show regular maps for which q is not too large and regular surfaces whose
number of junctions are not 2 (hosohedral surfaces). We do not show all the regular maps we have found so
far (more than 50 new cases), but rather we emphasize on the aesthetic visualization of few realizations in our
most symmetric embeddings. These four are our favourite embeddings so far, mapped on the edge graphs
of double covered Platonic solids whose branch points are the centers of faces. They are: R9.3’{6,4} on a
2-Cube, the 6-rings or R13.1’{12,3} on a 2-Octahedron (this has also a nice relation with the Borromean
rings [8]), R21.3’{6,4} on a 2-Dodecahedron and R37.2’{15,3} on a 2-Icosahedron, see Figure 12.

R9.3’ on a 2-Cube R13.1’ on a 2-Octahedron (the 6-rings [8])

R21.3’ on a 2-Dodecahedron R37.2’ on a 2-Icosahedron

Figure 12 : High genus regular maps embedded on the regular surfaces of double covered Platonic solids.

Unfortunately, due to the even sided faces of the Cube, we could only achieve one C3 axis and one C2
axis on the double covered geometry. For the other Platonic solids, we only lost the non-oriented symmetry
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of the Platonic solids. The double covering of the Tetrahedron gives the Cube, so we do not show any regular
maps mapped on its edge graph since the edge graph of the Cube is more symmetric.

R9.6’: 8 val-4 junctions, C2 R9.13’: 1 val-18 junctions, C9 R9.17’: 16 val-3 junctions, C3

R13.1’: 3 val-10 junctions R13.3’: 6 val-5 junctions R15.5’: 3 val-9 junctions

R16.3’: 10 val-5 junctions R17.11’: 8 val-6 junctions junctions R25.8’: 12 val-6 junctions

Figure 13 : Some selected high genus regular maps generated by the algorithm. In the first
row, junctions are placed manually on a target shape while for the rest, they are automatically
generated.

In Figure 13 are more examples of regular maps we succeed in embedding. For the first three surfaces,
we succeed in giving a rotational symmetry to the regular maps since the valence of the junctions is not too
high except those which have only one junction. As you can see, high valence junctions make the task of
getting symmetry hard. Hence, for those classes of regular maps, we only took a minimum of the spring
relaxation energy as the final shape.

In Figure 14 are three “really” large genus regular maps generated by our method. For these classes of
regular maps, obtaining symmetry is a huge amount of work. Even a non self-intersecting surface is hard to
obtain. However, we believe that a careful understanding of the tubes and tiles can improve the symmetry of
the shape. R85.8’ is the regular map with the highest genus ever visualized so far (excluding the hosohedral
type of surfaces). We asked ourselves how can one find an embedding even with one C2 axis of such a
complex topological object?
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R41.3’: 80 val-3 junctions R61.1’: 120 val-3 junctions R85.8’: 84 val-4 junctions

Figure 14 : Some large genus regular maps generated that are intersection free.

The algorithm does not have any limitation as long as the matchings between the regular maps are
provided. Van Wijk’s heuristic gives correct matchings of hundreds of regular maps which can all now be
visualized using our technique.

In this paper, we showed how to generate an embedding of a regular surface implicitly from a regular
map. The regular map itself does not have a priori an embedding. Hence, such maps (for example, R2.5) are
not handled by our algorithm. Our algorithm also does not find regular maps for the Hurwitz surfaces. An
interesting problem will be to find a similar procedure to realize directly regular maps.

Acknowledgement: We thank Jack van Wijk for his valuable suggestion. We also thank Ulrich Reitebuch
for generating the edge graph of the double covered Platonic solids. And finally, we thank the anonymous
reviewers for their constructive comments. This research was supported by the DFG-Collaborative Research
Center, TRR109, Discretization in Geometry and Dynamics.

References

[1] Beardon A.F., The Geometry of Discrete Groups, Springer Verlag, New York, 1983.

[2] Conder M, Regular Maps, August 2012,
http://www.math.auckland.ac.nz/~conder/OrientableRegularMaps301.txt.

[3] Coxeter H. and Moser W., Generators and Relations for Discrete Groups, Springer Verlag, 1957.

[4] Havas G. and Ramsay C., ACE-Advanced Coset Enumerator, 2002,
http://ww.itee.uq.edu.au/~cram/ce.html.

[5] Massey W.S, A Basic Course in Algebraic Topology, Graduate Text in Mathematics, Springer-Verlag, 1991.

[6] van Wijk J. J., Symmetric Tiling of Closed Surfaces: Visualization of Regular Maps. Proc. SIGGRAPH 2009, 49:1-12, 2009.

[7] Razafindrazaka F., Visualization of High Genus Regular Maps, master’s thesis, Freie Universität Berlin, 2012,
http://page.mi.fu-berlin.de/faniry/files/faniry_masterThesis_2012.pdf.

[8] Razafindrazaka F. and Polthier K., The 6-ring, In Proc. BRIDGES 2013 Conference, Entschede, Netherlands, 279-286.

[9] Reid M. and Szendro B, Geomery and Topology, Cambridge University Press, 2005.
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