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Abstract 
 
Repeating graphs whose lattice-link edges connect all the points of the square or of the triangular lattice can form the 
boundaries of symmetrical monohedral tessellations (tilings), termed lattice labyrinths. Requiring all lattice points to 
be connected implies that the prototiles of the tessellations are slim polyominoes and polyiamonds made up of 
corridors just one square or triangle wide, enclosing no lattice points and having boundaries of maximum length 
given their area. There is no upper bound to the area of the prototiles of the several infinitely populous families of 

lattice labyrinth tessellations. Lower-order examples invite Escherization and are a fertile source of logos. Despite 
being homeomorphic to the chessboard, honeycomb or other simple tilings, higher-order labyrinths are beguilingly 
intricate and the maximized boundary length and interpenetration of the prototiles may allow technical applications.  
 

Lattice Labyrinth Tessellations Constructed on the Square Lattice 

 
In layman’s terms, the square lattice is graph paper with dots. Each dot, or lattice point, is connected 

to its four nearest neighbors by lattice links, which form the boundaries of square tiles. The tiles 
tessellate to cover the Euclidean plain regularly without gaps. Examples of this tessellation include 

the chessboard and the layout of city blocks separated by a gridiron street plan. As part of my Ph.D. 

research [6] I explored routing strategies on the gridiron. Every intersection, or lattice point, is 

ultimately connected to every other by the street pattern, comprising an infinite graph in which every 
lattice link is an edge. Might it be possible to connect all the lattice points by a repetitive infinite 

graph without using all the lattice links? I soon found two graphs that achieve this, shown in Figure 

1. The lattice links used to connect the lattice points are the edges of a tessellation graph forming the 
boundaries of the prototiles of each tessellation; a five-square cross and the ancient swastika symbol. 

 

 
 

Figure 1: The basic tessellation and lowest-order Chinese lattice labyrinth tessellations. 

 
The three tessellations of Figure 1 are closely related. Each is monohedral, made up of just one 

shape. They are homeomorphic, topologically equivalent to each other, inter-convertible by 
continuous stretching and scaling. The tessellation graphs which form the boundaries of the shapes 
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connect every lattice point to every other. This means that the polyominoes which make up the 

tessellating shapes are slim, never more than one square wide.  A subset of the lattice points (all of 

them in the case of the chessboard) lie at the corners of the prototiles of the tessellation, which I call 

supertiles (just one tile in the chessboard case) and are the only lattice points where four lattice 

links of the tessellation graph meet. I call these the superlattice points. All three tessellations exhibit 

the same pattern of rotational symmetry axes – two distinct families of tetrads (90
O 

rotation leaves 

the pattern unchanged) and one family of dyads (180
O
 rotation leaves the pattern unchanged). In J.H. 

Conway’s notation [2], the tessellations all display 442 rotational symmetry. The chessboard and 
crosses tessellations also display mirror symmetry, which I am ignoring. 

 
It is natural to enquire whether the three tessellations of Figure 1 are the lowest order members 

of a larger general family sharing the above properties. Yes they are – I call them the Chinese lattice 

labyrinths  in honor of Dye’s classic book of traditional patterns [4]. Let’s narrow down our search 

for further family members. Firstly, note that in the crosses and swastikas tessellations, the 
superlattice points themselves form a square lattice, larger than and inclined to the original lattice. 

This superlattice is specified by the separation parameters (a,b), counting along the x and y axes 

respectively, which are (1,2) in the crosses case and (3,2) in the swastikas case. The squares of the 
superlattice are in one-to-one correspondence with the supertiles of the tessellation, so the area of 

each supertile must equal a
2
 + b

2
 in the general case, 5 and 13 squares in our two examples. This 

narrows the search to supertile areas which are the sum of two squares [3]. Secondly, each supertile 
has a central square plus four arms of identical shape (of zero area in the chessboard case), so the 

area of a supertile must be of the form 1 + 4m, where m is zero or a positive integer. Table 1 shows 

the lowest-order cases satisfying the integer-solutions-only Diophantine equation a
2
 + b

2
 = 1 + 4m. 

 
Separation 

Parameters  

a              b 

Area of each  

supertile arm   

m 

Area of the  

Supertile S 

a
2
 + b

2 

 
Comments 

1 

1 

3 

3 

1 

3 
5 

5 

1 
5 

3 

7 

0 

2 

0 

2 

4 

4 
0 

2 

6 
4 

6 

0 

0 

1 

2 

3 

4 

6 
6 

7 

9 
10 

11 

12 

1 

5 

9 

13 

17 

25 
25 

29 

37 
41 

45 

49 

gridiron/chessboard 

crosses (Fig 2)     

cannot be drawn, but see text 

swastikas (Fig 2) 

 

 
zero parameter case 

 

 
 

common factor case 

zero parameter case 
 

Table 1: Parameters of the lowest-order Chinese lattice labyrinth tessellations. 

 

 The Diophantine equation implies that one of the parameters a and b must be odd and the other even 
(we can let a be the odd parameter).  This satisfying result is only a necessary condition for higher-order 

examples of Chinese lattice labyrinth tessellations to actually exist. The sufficient condition I propose is a 

general algorithm for constructing a family member tessellation adaptable to any set of parameters (a,b), 

the elegant and powerful missing-links algorithm. The tessellation graph bounding the supertiles 
comprises all four lattice links intersecting at each superlattice point but only two of the four links 

intersecting at every other lattice point. The edges of the missing-links graph are just these unused two 

lattice links intersecting at each lattice point except for the superlattice points. Together they comprise an 
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infinite set of closed-loop Hamiltonian cycles [1] visiting no lattice point vertex more than once. Figure 2 

shows examples of tessellations, each with its elegantly simple and easily described missing-links graph. 
 

 
 

Fig 2:  Examples of Chinese lattice labyrinths showing the corresponding missing-links graphs. 

 
Fukuda et al [5] have developed a computerized procedure for generating all polyominoes and 

polyiamonds that will tessellate symmetrically, displaying results for n-ominoes up to n = 9. Their 

procedure will, I believe, encounter time-problems for high-order cases, which are likely to become 

intractable. There are already more than 10
13

 polyomino shapes to choose from when searching for 
Chinese labyrinth (5,12). The restriction to tessellations only of slim polyominoes leads to the missing-

link algorithm, the labor of which is only linearly dependent on the order of the polyomino. Missing-links 

graphs are easy to construct whereas the convolutions of the tessellation graphs resist comprehensive 
categorization.  The missing-links graphs shown for cases (1,2) and (5,12) in Figure 2 consist simply of 

squares or concentric nests of squares and can be generalized to the following general rule for case (a,b). 

 

To construct the missing-links graph for Chinese labyrinth (a,b), draw about each superlattice 
point a concentric nest of (a-1)/2 squares, the smallest of side 2, the largest of side (a-1) and  about the 

centroid of each supertile a concentric nest of b/2 squares, the smallest of side 1, the largest of side (b-1). 
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 However, if we try this rule out for any case where b = 0 or a and b share a common factor, c, then it 

fails to deliver a monohedral tessellation; we obtain instead a tessellation made up of polyominoes sitting 
in holes in larger polyominoes. A construction (there may well be others) for such cases involves thumbed 

squares; see Figure 2 for cases (9,6) and (7,0). I employ the shorthand <s;l,w>, to describe a square of 

side s with thumbs of length l and width w. The rule for common-factor missing-links graphs is: 

 
About each superlattice point construct a nest of polygons, each nest consisting of (a-c)/2 thumbed 

squares, of thumb-length (c-1)/2, the smallest being <2;(c-1)/2,1>, the largest <(a-c);(c-1)/2,(a-c-1)>. The 

thumbs point clockwise. Between these nests we can precisely insert the following figures, namely: 
       About each supertile centroid construct a nest of polygons as follows. 

 1). if c is of the form 4m+1  (m = 0,1,2…) each nest consists of (2b-c+1)/4 squares, the smallest of 

side 1, the largest of side (2b-c-1)/2, within (c-1)/4 thumbed squares of thumb-length (c+1)/2,  being  
<(2b-c+3)/2;(c+1)/2,1>, <(2b-c+7)/2;(c+1)/2,3>,…..,<(b-1);(c+1)/2,(c-3)/2>. The thumbs point 

anticlockwise. 

 or 2). if c is of the form 4m+3 (m = 0, 1, 2….) each nest consists of (2b-c-1)/4 squares, the smallest 

of side 1, the largest of side (2b-c-3)/2, within (c+1)/4 thumbed squares of thumb-length (c-1)/2,  being: 
<(2b-c+1)/2;(c-1)/2,1>,<(2b-c+5)/2;(c-1)/2,3,……,<(b-1);(c-1)/2,(c-1)/2>. The thumbs point clockwise. 

 

       No Chinese labyrinth can be drawn for maverick case (3,0). An attempt leads to case (3,3) in Figure 
3, in which each supertile has a dyad axis of symmetry at its centroid but the symmetry of the tessellation 

is still 442. The two sets of tetrad axes are now both situated at lattice points, with different environments. 

Either set could be chosen as superlattice points with separation “forced apart” to (3,3) and specifying a 
member of a new family of lattice labyrinths having both separation parameters odd. Table 2 lists lowest-

order members of the serpentine lattice labyrinth family, named from the characteristic supertile shape. 

 

Separation 

Parameters 

a          b 

Fundamental 

Domain, Area  D 

(a
2
 + b

2
) 

Supertile 

Area S 

Comments 

    3           

3 

5 

5 

5 

7 

7 

7 

9 

9 

1 

3 

1 

3 

5 

1 

3 

5 

1 

3 

10 

18 

26 

34 

50 

50 

58 

74 

82 

90 

5 

9 

13 

17 

25 

25 

29 

37 

41 

45 

basic tessellation Fig 3 

Chinese (3,0) failure Fig 3 

Fig 3 

 

equal parameters case 

 

 

 

 

common factor case 

 

Table 2:  Lowest-order members of the serpentine lattice labyrinth family. 
 

       Figure 3 includes the lowest-order basic tessellation of the serpentine family, case (3,1). Each 

labyrinth is generated by a fundamental domain of area D, being a pair of identically shaped, diagonally 

symmetrical supertiles of area S, oriented at 90
O
 to each other, so that D = a

2
 + b

2
 = 2S. Note that the 

sequence of value of S in Table 2 is the same as for Chinese labyrinths in Table 1, all being of the form 

1+4m. Other 1+2m values seem to be allowed by the symmetry, but cannot be the sum of two squares 

[3]. The construction of missing-links graphs for serpentine lattice labyrinths is closely analogous to that 
for the Chinese family. In all cases where  the separation parameters are co-prime, the standard missing-

links graph consists of concentric nests of squares, the smallest of side 2, about each set of tetrad axes, but 
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in cases where a = b or a and b share a common factor, we once again need to call on thumbed squares. I 

have found rules that can be applied to all allowable pairs of separation parameters, but other non-
standard constructions are possible in at least some cases; some are included in my workbook [7]. 
 

 
 

Figure 3: Serpentine lattice labyrinth (25,15), family friends and the basic tessellation.    
 

We have looked at lattice labyrinth families of tessellations for separation parameters (a,b) of form 

(odd,even) and (odd,odd). Lattice labyrinths displaying 442 rotational symmetry also exist for 
(even,even) parameters. Description of their intriguing properties must await another occasion. 

 

 

Lattice Labyrinth Tessellations Constructed on the Triangular Lattice 

 
       The techniques employed for constructing lattice labyrinths on the square lattice can be extended to 
generate even more astonishing tessellations on the triangular lattice. Figure 4 shows the tessellation of 

triangles and some members of the trefoil lattice labyrinth family which is its generalization. They are 

diverse in form; one having an illusory three-dimensional appearance.  The lattice points, at each 

intersection of six links of the triangular lattice “graph paper”, are omitted from this crowded figure. 
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Figure 4: Some trefoil lattice labyrinths and the basic tessellation of equilateral triangles. 

 

Figure 4 needs explaining. The rotational symmetry of the basic tessellation of equilateral triangles 
comprises hexads (a 60

O
 rotation leaves the pattern unchanged) at each lattice point, triads (a 120

O
 

rotation
 
leaves the pattern unchanged) at the centroid of each triangular tile and dyads at the center of 

each lattice link. The shorthand for the symmetry pattern is 632 [2]. All tessellations in Figure 4 share this 
symmetry. Note that, once again, every lattice point is connected by the tessellation graphs, so that the 

supertiles are slim polyiamonds, no more than one triangle wide and enclosing no lattice points. Each 

higher-order trefoil lattice labyrinth tessellation is monohedral and homeomorphic to the basic tessellation 

of triangles, having two sets of identically-shaped supertiles oriented at 180
O
 degrees to each other.  

 

  How do we set out a trefoil labyrinth on the triangular lattice? The array of superlattice points, at 

each of which is a hexad axis of symmetry, is another triangular lattice of superlattice points, larger and 
usually inclined to the original lattice. Figure 5 shows how superlattice points are set out at separation 

parameters (e,f), in this case (4,3), measured along axes at 60
o
 to each other. 

 

 
 

Figure 5: How to set out superlattice points at separation (e,f) on the triangular lattice.  
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        The area of each large triangle measured in triangles of the original lattice equals e
2
 + ef  + f

2
 

(termed a Loeschian number),each supertile of a trefoil lattice labyrinth consisting of a central triangle 
and three identical arms, so of the form 1 + 3m, implying the Diophantine equation e

2
 + ef  + f

2
 = 1 + 3m.  

Once again, the Diophantine equation gives only a necessary condition for the existence of members of 

the trefoil lattice labyrinth family, but the missing-links algorithm comes to our rescue, in some cases at 

least, supplying sufficiency by enabling construction. On the triangular lattice, each lattice point is a 
vertex where six lattice links meet. Trefoil labyrinth superlattice points lie where six supertiles meet, so 

all lattice links to them are used in the tessellation graph but the graph uses only two of the links meeting 

at every other lattice point. The missing-links graph must therefore include four lattice links to every 
lattice point except for the superlattice points. This can be achieved by two Hamiltonian cycles 

intersecting at each lattice point. Simple and elegant cyclic graph elements can be used, including 

hexagons, hexagrams and other hexagonally symmetrical figures nested about the superlattice points and 
triangles and other trigonally symmetrical figures nested about the triad axes, as seen in Figure 4. Cycles 

nested about the dyad axes may also be needed. I have discovered general rules for some trefoil sub-

families, for instance with separation parameters of form (e,1).  Figure 6, trefoil (44,1) is dedicated to my 

eldest daughter, born in 1981, this being the number of triangles in each supertile.  Such sub-families are 
infinitely numerous and I’ve yet to succeed in the addictive search for a fugitive general solution.  

 

 
 

Figure 6: Six supertiles of birth-year trefoil lattice labyrinth (44,1), supertile area 1981 triangles. 

 
The regular tessellation of hexagons can also be set out on the triangular lattice and, if we allow just 

the central lattice point in each supertile to remain unconnected by the tessellation graph, this honeycomb 

tessellation is also the basic tessellation of a family, the honeycomb lattice labyrinths, which again display 

632 symmetry.  Each supertile, being hexagonally symmetrical, must have an area divisible by 6, which 
implies the Diophantine equation 2( e

2
 + ef + f

2
) = 6m, so that e

2
 + ef + f

2
 = 3m. It is rewarding that this 

equation specifies just those Loeschian numbers and separation parameter pairs not allowable for trefoil 

labyrinths. Figure 9.3 also shows examples of the dart and diamond lattice labyrinth families. These 
families both obey e

2
 + ef + f

2
 = 3m and elegantly partition all possible cases between them. Dart 
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labyrinths can only be drawn for (even,even) cases of (e,f), while diamond labyrinths can only be drawn 

for (odd,odd) and (odd,even) cases.  Figure 7 also shows the basic tessellations of the dart and diamond 
familes. Note how the fundamental domain of diamond labyrinths consists of three supertiles oriented at 

120
O
 to each other, dart labyrinths having six supertiles at 60

O
 to each other. Missing-links graphs of 

these families are harder to discover and to generalize than are those of trefoil and honeycomb labyrinths. 

Honeycomb, dart and diamond missing-links graphs include non-cyclic elements, as seen in Figure 7.  
 

 
 

Figure 7: Lattice labyrinth families for separation parameters obeying e
2
 + ef + f

 2
 = 3m.  

 

 Apparently complex lattice labyrinth tessellations can be thought of as generalizations of simple 
basic tessellations. Tessellations of unlimited intricacy can be found using the missing-links algorithm. 

Constructing original examples and seeking general rules are challenging and rewarding pastimes.  
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