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Abstract 
 

The 2002 proof of the Double Bubble Conjecture on the ideal shape for a double soap bubble depended for its ideas 

and explanation on beautiful images of the multitudinous possibilities. Similarly recent results on ideal tilings depend 

on the artwork. 

 

Bubbles 

 

I'm a geometer. To do mathematics, I have to have a picture in mind. For example, I like to picture soap 

bubbles. Soap bubbles are round, beautifully round, a perfect shape, as in Figure 1a. This round shape is 

the optimal, least-energy, least-area way to enclose a given volume of air, as was proved mathematically 

by Schwarz in 1884. A perfect mathematical sphere, as rendered in Figure 1b by John M. Sullivan, 

enhanced by simulated lighting, makes for the perfect soap bubble. 
 

   
 

Figure 1: Soap bubbles are beautifully round.  

a. 4freephotos.com; b. John M. Sullivan, used by permission, all rights reserved 

 

When two soap bubbles come together, they form the familiar double bubble shape of Figure 2. 
 

 

 

Figure 2: The double bubble. sxc.hu 
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Question: is this standard double bubble the optimal, least-area way to enclose and separate two given 

volumes of air? A 1990 undergraduate thesis by Joel Foisy stated this conjecture. 

 

Double Bubble Conjecture: The standard double bubble is the least-area way to enclose and separate 

two given volumes of air. 

 

On the other hand, might something completely different do better? What are some other possibilities? 

Two separate bubbles as in Figure 3 are less efficient, because when they come together they can share 

the common wall. A bubble inside a bubble is even worse: if you move the inner bubble out, the outer 

bubble gets smaller. 

 

     
 

Figure 3: Two separate bubble or worse a bubble inside a bubble is inefficient. 

 
Are there any other possibilities? Yes, but none that we've ever seen. To describe them, we cannot rely on 

photographs. Figure 4 shows an exotic double bubble, with one bubble on the inside, with a second 

bubble wrapped around it in a toroidal innertube. Now this double bubble is unstable and has much more 

area than the standard double bubble. So it doesn't contradict the conjecture. But it does make you realize 

that there may be many other possibilities which neither we nor the bubbles have thought of yet.  

 

  
 

Figure 4: An exotic double bubble with one bubble wrapped around another. 

John M. Sullivan, used by permission, all rights reserved. 

 
There are more possibilities. Maybe as in Figure 5 the first, blue, inner bubble could have another 

component, a thinner innertube wrapping around the fatter red innertube, connected to the inner bubble by 

a thread of zero area, if you like. Or maybe there could be layers of innertubes on innertubes. Or maybe 

the bubbles could be knotted as in Figure 6. 
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Figure 5: Layers of innertubes.  

Drawings by Yvonne Lai, former undergraduate research student, all rights reserved. 

 

 
 

Figure 6: Bubbles knotted about each other. 

 
Or maybe as in Figure 7 the double bubble could be totally fragmented into millions of pieces, maybe 

with empty space trapped inside. 

 

 
 

Figure 7: A fragmented double bubble. 

Photo by F. Goro, used by permission, all rights reserved. 
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Alas there are innumerable possibilities to rule out in order to prove that the conjectured standard double 

bubble is best. Yet in this gallery of possibilities there shines a ray of hope: they all look unstable and 

very area expensive. On this basis the work to narrow down the possibilities went forward. First of all, a 

proof outlined by Stanford mathematician Brian White showed that the minimizer has to have lots of 

symmetry, has to be a surface of revolution. Starting from this proof, Michael Hutchings, a former 

undergraduate research student, now Professor of Mathematics at the University of California at 

Berkeley, showed that the total number of components is at most three, as in Figure 5a, although they 

could, in principle, be quite lopsided. The final argument, developed with my collaborators from Granada, 

Spain, Manuel Ritoré and Antonio Ros, proved the cases of one or two innertubes around a central bubble 

unstable and therefore not minimizing. 

 

The instability proof, which we'll describe in the case of one innertube, is suggested in the working 

illustration of Figure 8, actually of rather high quality among the kind of scratchwork used by 

mathematicians. The bubble on the left has a yellow innertube about it from top to bottom. The way to 

reduce area and thus prove instability is to rotate the left half to the left and the right half to the right. The 

top gets fatter, the bottom gets thinner, but the net volume of each bubble remains the same. At the joints 

at top and bottom, cusps form, which can be smoothed to reduce area slightly. For more information, see 

[1]. 

 

 
 

Figure 8: This exotic bubble can be shown to be unstable by rotating the left half to the left and the right 

half to the right. 

 

 

Tilings 

 
Tilings of the plane have intrigued mathematicians and architects for millennia. Although tilings by 

triangles, squares, and hexagons are the most common, tilings by pentagons are especially interesting and 

beautiful. Figure 9 shows my two favorite tilings by pentagons, the Cairo tiling and the Prismatic tiling. 
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                      Cairo Pentagonal Tilling                                            Prismatic Pentagonal Tiling 

 

Figure 9: Efficient pentagonal tilings. 

 

Both the Cairo and the Prismatic tile have two 90-degree angles and three 120-degree angles. The 90-degree 

angles are adjacent in the Prismatic tile but not in the Cairo tile. These two tilings are in some sense 

mathematically perfect. Among tilings by unit-area convex pentagonal tiles, they minimize perimeter or the 

amount of grout required between them, as I proved in collaboration with eight undergraduate students [2]. I 

then issued a challenge to prove further that you couldn't tile the plane with a mixture of these two tiles. In 

short order, an undergraduate at MIT, Brian Chung, proved me wrong by finding an infinite family of such 

mixtures, consisting of alternating diagonals of Cairo and Prismatic tiles, as in Figure 10. The Cairo tiles are 

grouped in hexagons of four, while the Prismatic tiles are grouped in twos. Uncountably many other such 

tilings may be obtained by alternating variable numbers of copies of diagonals of one type with variable 

numbers of copies of diagonals of the other type. In the second tiling, each diagonal of Cairo tiles followed by 

three diagonals of Prismatic tiles. 

 

   
 

Figure 10: Two of an infinite family of mixtures of Cairo and Prismatic tiles. 
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The students believed that these were the only possible mixtures. Their method of proof was to assume 

there was another, start to build it, and reach a contradiction. Instead, they found another tiling, pictured 

in Figure 11. 

 
 

Figure 11: Another Cairo-Prismatic tiling, "Pills." 

 

Then they came across the earlier example of Figure 12 on the webpage of the amateur mathematician 

Marjorie Rice. She found these tiles not because she was trying to minimize perimeter but just because 

they made such beautiful tilings. 

 

 
 

Figure 12: An earlier Cairo-Prismatic tiling by amateur geometer Marjorie Rice. 
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Eventually, by trial and error with Geometer's Sketchpad, they found many other such Cairo-Prismatic 

tilings with symmetries of four of the seventeen wallpaper groups and others with fewer or no 

symmetries. Those of Figure 13 have threefold symmetry. 

 

      
 

Figure 13: "Windmill" and “Waterwheel" have three-fold symmetry. 
 
Others as in Figure 14 have translational and rotational symmetry. Some as in Figure 15 have only 

vertical and horizontal reflectional symmetry. 

 

         
 

Figure 14: "Spaceship" has translational and rotational symmetry. 

 

       
 

Figure 15: "Christmas Tree" and "Plaza" have only vertical and horizontal reflectional 

symmetry. 
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Figure 16 features "Chaos," with no symmetry at all, and the students' favorite, "Bunny," with the two 

bunny ears at the top. 

 

   
 

Figure 16: "Chaos" and "Bunny." 

 

The discovery of these beautiful tilings required a combination of logical deduction and artistic 

development of the possibilities, one of the secrets of good mathematics and of good art. 
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