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Abstract

The stereographic projection is a popular methedifwing spherical panoramas because of its ghdirepresent
the scene as a “little planet” with a simulatedrbead view. However, the stereographic projeatioes not work
well for indoor scenes. In this paper, we presemhethod for producing a counterpart to the stesggc
projection for indoor scenes. The main innovatidroor method is the introduction of a novel azinaitmap
projection that can smoothly blend between theesgnaphic projection and the Lambert azimuthal kgrea
projection. Our projection has an adjustable patamthat allows one to control and compromise betwe
distortions in shape and distortions in size witthie projected panorama. This extra control parargves our
projection the ability to produce superior resoler the stereographic projection.

1. Introduction

Recent advancements in image stitching algorithmasfisheye lens optics have made capturing spHerica
panoramas easier than ever. Consequently, theie go@ving number of photographers who work with
such images. Spherical panoramas are the widesibpoghotographs that one can capture from aesing|
viewpoint. They capture the entire sphere of ligfat shines over the photographer into a singleggé@na
However, spherical panoramas cannot be viewedyaasiéss projected to a planar image.
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Figure 1. Revolvable panoramas created using our method.

view 1

The stereographic projection [8] is a popular mdthor artistic visualization of spherical
panoramas. In fact, it is so popular on the Intethat there are thousands of stereographic parasram
posted in Flickr [1]. The stereographic projectismparticularly good in producing a fake bird's eyew
of an outdoor scene. This effect is commonly knasrhe "little planet” effect. This moniker camenfi
its ability to convert spherical panoramas intastit photographs resembling planetoids in the heicd
the sky. Moreover, these little planets have a rkatde property which we shall calevolvability.
Revolvable images exhibit resilience to rotatiohafis, if one rotates the image around its cenyeany
angle, one can still get a reasonably intelligiblage. In fact, flipping the image upside-downpeéhe
image just as plausible as the original unrotatadion
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In this paper, we will present a spherical map guotipn derived from blending the stereographic
projection with the Lambert azimuthal equal-areajgmtion. This proposed projection can also be
considered as a generalization of both projectibik® the stereographic projection, our projectiam be
used to convert a spherical panorama into a phapbgwith a simulated overhead view of the scene. In
addition, the resulting image will also be revollaliJnlike the stereographic projection, our pré@tis
suitable for indoor scenes. Figure 1 shows sommpbes of our results.

So, why is the stereographic projection suitabteofgdoor scenes but not for indoor scenes? Usually
in outdoor scenes, the topmost region of the panara just the homogeneous blue sky. This region ca
be cropped out without adversely affecting the allgranorama. In contrast, for indoor scenes, drapp
the ceiling out usually makes the panorama looknmaete. On the other hand, including too much of
the ceiling causes significant size disproportibesnveen the ceiling and the floor. See Figure 9afor
sneak peek of a picture showing the deficiencigb@tereographic projection for indoor panoramas.

2. Algorithmic Overview

An overview of the pipeline for our method is showrFigure 2. The input to our algorithm is a sper
panorama. The output is an image with a simulatedhead view of the location. The projection caissis
of 2 steps. The first step is a projection of thbese to a circular disc in the plane. We presemb\al
azimuthal map projection for this step. The secstap is to convert this circular disc into a squar
region. We denote this step as disc-to-squarefication.

For efficiency reasons, the actual implementatibthe projection on a computer works backwards
by starting from the projected image and fetchimgels from the spherical panorama to fill in the
projected image. An algorithmic pseudo-code impletagon is shown next to Figure 2. Each step & th
pseudo-code corresponds to a box in the block @imghown in Figure 2, but in reverse order.

(u,v) (x,y) Rectified Azimuthal Projection algorithm
E—— . Input:  spherical panorama,
blend parameter (for artistic control)
Output: revolvable image

For each pixel in the output image
1) Convert the coordinates (x,y) on the square to
corresponding disc coordinates (u,v).
(See Section 5 for the equations)
2) Convert the disc coordinates (u,v) to latitude @

Figure 2: An overview of our projection from a and longitude A on the sphere. This step

. . involves using the equations in our proposed
spherical panorama to a revolvable image. azimuthal map projection.

(See Section 4 for the equations)

3) Fetch the pixel color at the spherical
coordinates (A,@) of the input panorama and
use this as the color value of the current pixel

3. Azimuthal Projections

Azimuthal projections are map projections in whiblke sphere is projected onto a plane tangent to the
sphere at a selected point [4]. This selected pwihére the tangent plane intersects with the gpheti
be at the center of the projection. In azimuthajgmtions, the direction (also known as azimutbjrfithe
center of the projection to every other point o@ finojection is shown correctly. Moreover, the ssir
route from the center to any other point on thggation is a straight line. Thus, azimuthal projecs
place utmost importance to the center point ofpitogection. All azimuthal projections map the sghy
a circular disc on a plane, but this disc needbedinite.

Polar azimuthal projections are azimuthal prof@dithat put the North or South Pole at the cesfter
the projection. These projections have many desinatmperties that make them useful in the creation
revolvable images. These properties include
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» There is radial symmetry of scale around the cemtkich produces naturally circular images;
* Meridians of constant longitude are straight lieesanating radially from the center;

» Parallels of constant latitude are concentric egaentered at the pole;

* The meridians and the parallels intersect at. 90

When applied to spherical panoramas, polar aziahygrojections produce results that lead to the
appeal of revolvable panoramas. Vertical featunashsas wall corners, posts, and tree trunks are
meridians on the sphere. After projection, theyaenas straight lines radiating outward from thetee
of the image. Horizontal features of constantualt in the spherical panorama are projected to gmoo
circular arcs. Moreover, these vertical and hariabfeatures still meet at 9@fter projection.

The principal equations for polar azimuthal mapjgetions arei = tan='( %) and ¢ = f(r) where
r=+vu? +vZ . The variablesl and¢ are longitude and latitude on the sphere, respagtiihe range of
values for these geodetic angles arex< 2 <= and-- < ¢ <~. The variablesi andv are coordinates on
the plane after projection to a circular disc. Asamvention in this paper, the disc is centerethat
origin. The variable is the distance of the projection pofajv) to the center of the disc.

All polar azimuthal projections share closely-rethtequations for mapping geodetic spherical
coordinates(,¢) to projective plane coordinatés,v). In fact, they all have the same expression for
longitude 4 astan~'(%/,,) . Also, the latitude of the projected point onlypdads on its planar radial
distancer = Vu2 + v2 to the center of the projection. The functigr) can be specified arbitrarily. Each
azimuthal projection is distinguished by a diffaremctionf that expresses latitude in terms of

Stereographic Projection The stereographic projection is an important atal map projection studied
and described in Ptolemy's Planisphaerium datirmif b 100 A.D. This projection maps the sphererto a
infinite plane. Figure 3 shows a stereographicgenaf the world and a panorama with the “littlenatl
effect. The equation for latitude in the south pa@apect of this projection [4] i =2 tan—l(r)—g .

The stereographic projection is a conformal magpirhis means that angles between features are
preserved locally after the projection. In otherrdg small scale shapes are not distorted within th
projection. This property makes this projectionfukéor photographic applications. In particulahet
stereographic projection works especially well ioducing “little planets” of outdoor panoramas. It
accentuates the shape of features in the upperspbeare to give a pleasing cartoony effect. Howeiver,
deemphasizes the size of features in the lowerdpnare. This is often undesirable for indoor pamasa

Since the stereographic projection maps the spleesn infinite plane, cropping is necessary in
order to get a finite image of the spherical pam@a It is possible to gdtr — ¢ steradians of spherical
coverage using the stereographic projection, whegean arbitrarily small solid angle. However, this
comes at the expense of extreme enlargement eirésanear the zenith. The smaklagets, the larger the
disproportion in size between the hemispheresagitiear in the projected image.

N

=~/

Figure 3: Stereographic projection (left) and an Figure 4. Lambert azimuthal equal-area
example of a panorama with the little planet projection in standard (left) and south polar
effect (right). Both images are cropped. aspect (right).
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Lambert Azimuthal Equal Area Projection. Johann Heinrich Lambert developed an important
azimuthal map projection in 1772. This projectioap®s the sphere to a finite circular disc. Figure 4
shows a Lambert azimuthal mapping of the worldsrsiandard form and in a polar aspect.

In the canonical form of the Lambert azimuthal dguaa projection, the intersection point between
the equator and prime meridian is located at tmteceof the disc. The point at the opposite sidéhef
world is the intersection point between the equatat the international dateline. This antipodahpds
projected to the whole perimeter of the disc.

The Lambert Azimuthal projection has an importaaperty that makes it useful in many geographic
applications. This property is known as the "ecuak" property. In differential geometry parlanies
Lambert azimuthal projection is known as an eqailgpeojection [2]. Equiareal means that the progect
preserves the relative size of all features aftermapping. In other words, the area of any featarthe
sphere will be proportionally the same to its pcogel area on Lambert's circular disc. This propexty
important in keeping a proper balance of size behrfeatures in projected panoramas.

Lambert designed his projection with several aspectnind. The one with particular interest to sIs i
when the South Pole is at the center of the piioject his is called the south polar aspect of thenbert
azimuthal equal-area projection [3]. The equation latitude in this aspect of Lambert's azimuthal
projection is¢ = 2 sin™'(r) -~ .

This equation holds when the sphere is mapped tmarareal unit disc on the plane. The distance r
from a projected poinfu,v) to the center point of the disc is restricted tol. The South Pole (nadir) lies
at the center of the circular disc and the Nortle Rpenith) is spread across the whole perimetehef
circular disc.

Like the stereographic projection, the Lambert aghral projection has its shortcomings when used
for projecting to indoor spherical panoramas. Intléke Lambert azimuthal projection balances the si
of features within the indoor panorama, but thimes at the expense of features appearing unngturall
elongated and squished near the ceiling. Thisdadmse the Lambert azimuthal projection distortdesng

4. A Blended Azimuthal Projection

The stereographic projection is a conformal mapping the Lambert azimuthal projection is an eqaiare
mapping. The azimuthal nature of both map projestimmakes them suitable for creating revolvable
panoramas. However, this azimuthal property is lisuzot enough to make aesthetically-pleasing
panoramas. Being conformal or equiareal is alsmmapt. Conformal projections preserve angles withi
the mapping and avert shape distortions in the r@am@. Equiareal projections preserve area withén th
mapping and avert size distortions in the panorama.

Ideally, we want to have a mapping that is bothf@monal and equiareal. A theorem in differential
geometry states that this is equivalent to beingsametry. An isometric mapping preserves distances
across the entire projection; and in the proces®sdnot distort shape or size. However, for our
application of mapping the sphere to the planegtiea well-known theorem by Euler (1775) thatesta
that no such isometric mapping exists [4]. In otleords, the best that we can do is look for a
compromise [9] between being conformal and beingaggal in our projections. It is impossible to bav
both properties.

A Blended Compromise As a compromise, we present an azimuthal pragedtat essentially blends
the stereographic projection with the Lambert atiralequal-area projection. We introduce the végiab
B which acts as blending parameter between the nwgegions. Wherp is set to 0, the resulting
projection is the stereographic projection. Wifers set to 1, the resulting projection is the Larhbe
azimuthal projection. In between, the projectionaishybrid of the two azimuthal projections. The
equation for latitude in this blended azimuthaljgction is ¢ = 2 tan™1( Jﬁ) —g
It is easy to check by substitution and some alydbat the latitude equation for this blended
azimuthal projection matches the stereographictemuavhenp=0. Likewise, it is easy to check that the
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latitude equation for this blended azimuthal pro@gtmatches the Lambert azimuthal equation wheh
by using the trigonometric identityin~1(r) = tan™'(r/vV1 —7r2) .

Normalized Form. The stereographic projection maps the sphere amtofinite plane. In contrast, the
Lambert azimuthal projection maps the sphere orfioite circular disc. Needless to say, there igide
disparity between the span of both projectionrtter to have an effective blend of the two proged,
we need a projection with a span that can grow fadinite disc to the infinite plane gsgoes from 1 to
0. This is exactly what the blended azimuthal prige does - it grows infinitely in size #sapproaches
0. In fact, the blended azimuthal projection mdgesdphere to a disc with radil};zéB .

The vast difference in the spanning range betwienstereographic and the Lambert azimuthal
projection adds difficulty in creating photograpfiem blending the two projections. We, therefore,
propose a normalized form of the blended azimyphajection. This normalization can be derived from
its unnormalized latitude equation by writing r terms of a normalized dummy variable defined as
Raummy =7 B, then renaming the dummy variable out of the @qnaffter this, the equation for latitude

_ -1 r _r
becomes ¢ = 2 tan (Bm) > -

This normalized form of the blended azimuthal pctn effectively maps the sphere to a unit disc
for all values ofg € (0,1]. The only complication with this normalized form fisat we are strictly
restricted to have¢g > 0. That is, this projection cannot be set to%0§tereographic. This limitation
stems from the difficulty of scaling down an infmiplane to a unit disc. Neverthele§gan be set to an
arbitrarily small numbeg > 0 that can make the projection as close to ateaphic as one wishes
without actually setting to zero. This helps us prevent division by zero atier undesirable infinities in
the equations. Figure 6 shows the normalized bitadenuthal projection at different values/bfrom
0.1to 1. In essence, this is like a sequenceanidss of morphing from the nearly stereographicgutagn
to the Lambert azimuthal equal-area projection.

In summary, we have presented a blended azimutttagbion that is a hybrid between the
stereographic projection and the Lambert azimutiqalal-area projection. Furthermore, we introduced a
normalized form that always maps the sphere tatadist. A table summarizing the key propertie$haf
4 polar azimuthal projections of interest is preddelow.

Azimuthal ¢ =) r=f7(¢) key mapping | blend
projection — |2 2 where u=r cosA v=rsini property span
(south polar aspect) where r u?+v value
tan( + )
i _ “1oN_ T r = tan(=+— <
stereographic ¢=2tan"1(r) 5 2" conformal | 0<r <o 0
] T
Lambert ¢=2sin"t(r) -2 r= Sm(E + Z) equiareal | 0<r<1 1
azimuthal 2
O
r - sm(7 + Z) .
blended ¢=2tan N (—=)=5| "7 o b 7 adusable | o<z | P
1-pr \/cosz(7+z)+ﬁzsin2(7+z) B
in@4 T
normalized | _ 5 papr Ty T . Bsing + P adjustable | 0<r<1| B
blend - pVI—7r2 2 o, m ¢ T
Jcosz(7 +7) B sin’ (G + )

Figure 5: Table summarizing the different map projections used in this paper.
The 2nd and 3rd columns of the table are forward and inver se equations relating latitude ¢ on the sphere
with radial distancer onthe circular disc after projection.
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Figure 6: The normalized blended azimuthal projection (south polar aspect) at varying values of f .

5. Disc-to-Square Rectification

Most of the world's photographs are rectangulamopRe are so accustomed to seeing rectangular
photographs that there is a slight psychologicafsion to photographs that are not. Besides, rgigan
are easily tiled for display in albums, and makecimmore efficient use of display space than circles
This is the main motivation for this extra stepihis section, we shall introduce a simple algonitfor
mapping a circular image to a square. We desighisdatgorithm to work well with circular azimuthal
images as input.

Our problem of mapping a circular disc to a squarsimilar but not equivalent to the classic
mathematical problem of "squaring the circle". Boe thing, in the classic mathematical problem,isne
restricted to only using a straightedge and a caesyp@ur problem concerns finding an algorithm that
computer can perform and calculate. So this isgaifitantly reformulated problem with a specific
application of converting circular photographs iatpuare photographs.

The canonical space for our mapping is the unit dentered at the origin inscribed inside a square.
This unit disc is defined & = {(x,y)| x? + y? < 1}. Its circumscribing square is defined as the negio
S = [-1,1]%. This square has a side of length 2.

In this paper, we shall denofe,v) as a point in the interior of the unit disc afpdy) as the
corresponding point in the interior of the squdterahe mapping. Our goal is to derive an equatiat
relates(u,v) to (x,y). This equation will ultimately define how the mag converts a circular disc to a
square region. Figure 7 shows a diagram of thedisutand the square used for the mapping.

Radial Constraint. As a design constraint, we impose that the athgiethe poinf{u,v) makes with the x-
axis be the same angle as that of p@wy). We denote this constraint as the radial congtfainthe
mapping. This effectively forces points to only vearadially from the center of the circle duringeth
mapping process. Mathematlcally éfis the angle between the pofotv) and the x-axis, these equations

u v
must hold: cos 6 =T J_ and sing = Npereein W
Meanwhile, each poinfu,v) in the interior the C|rcular disc can be parameser with its polar

. b . . ' .
coordinates ag =t cos@ =t Nz and v=tsing =t \/_ ,Where 0<t < 1is the point's distance to
the origin, and is the point's radial angle with the x-axis. Thextnstep is to find a suitable expression

for t in terms ofx andy, so that we have a mapping equation that re{atesto (x,y).

“'a

Figure 7: Diagram for the disc-to-square Figure 8: FG-squircle x? +y2 — = x%y? = k?
rectification process. at varyings parameter values.
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Fernandez-Guasti's Squircle. In 1992, Manuel Fernandez-Guasti [5] introducedakyebraic equation
for representing an intermediate shape betweerciticée and the square. His equation included a
parametes that can be used to morph from a circle to a sgearoothly. Figure 8 illustrates the shape at
varying values o$. This shape has the equatioh+ y? — ;—Z x?y? =k?.

The parametes can have any value between 0 and 1. W&en0, the equation produces a circle
with radiusk. Whens = 1, the equation produces a square with a sidgtheof 2k. In between, the
equation produces a smooth curve that resembléssbapes. Using the squircle, we can design a ay t
map a circular photograph smoothly to a squareqgmaph. The main idea is to map each circular
contour in the interior of the disc to a squiraiglie interior of the square.

In order to get a continuum of growing concentqaiscles in the interior of the square, we impose a
simple rules = k in Fernandez-Guasti's squircle equation. Thiscéffely reduces this squircle equation
to x? + y? — x?y? = s? . Furthermore, by varyingfrom O to 1, we get contour curves that fill tiderior
of a square with concentric squircles growing iresiWe then correspond each squircle contour of
parametes inside the square to a circular contour of paramenside the circular disc. This can be done
by setting s =t = \/x2 + y? — x2y2. Substituting back, we get simple equations megathe pointu,v) on
the disc to the poir(k,y) on the square. These equations are

x /xZ +y2 — nyZ y IXZ +y2 _nyZ
u= v =
/xZ +y2 /x2+y2

6. Results and Possible Enhancements

We show images produced by our method applied erakspherical panoramas in Figure 9. We also
show the effects of varying the blend paramgten the panoramé# can be considered as a parameter
for artistic control of the compromise between getonformal and being equiareal. We call our method
as the rectified azimuthal projection.

Although we emphasized the use of our projectiagrirfidoor scenes in this paper, we would like to
mention that our method also works with outdoomnsse Figure 9 shows a progression of our projectio
for an outdoor scene wighvarying from 0 to 1. The cropped stereographttelplanet (leftmost image)
highlights one of the inherent problems with therasbgraphic projection. Whenever there are vety tal
features in the outdoor panorama, such as the itliootolumns in our example, there is excessive
enlargement of features near the zenith of the naam@. Moreover, this enlargement comes at the
expense of the other features within the panoramegifically those near the nadir which get reduoed
size. In our example, the nadir region is shrunkh® point of being barely perceptible. In contraise
Lambert azimuthal equal-area panorama at the tighds to squish features near the zenith, which
effectively makes shapes difficult to discern. Tiv® middle images offer a compromise between the
stereographic and the Lambert azimuthal projectiand give results that balance distortions in size
shape. Also, although we did not examine the distoreffects of our disc-to-square mapping to the
overall projection, we would like to mention thhgetartistic control parametgrcan be used to mitigate
much of the size and shape distortions introdugetthils extra step in the projection.

There are several enhancements to our method thata discussed in this paper. We refer the
interested reader to our expanded preprint [6d&trils. First, our images are confined to a squafe
have investigated ways to extend our method to ymedectangular images. Also, in this paper, we
restricted our discussion to the case where théhSBale is at the center of projection. It is cielta
useful to be able to use any location on a tilteldese as the center of the projection. Likewisethia
paper, we relegated the determination of the bfgardmetep to manual tweaking as an artistic control
parameter. Ideally, we want to explore automategsved figuring out the most aesthetically-pleasihg
There are several avenues for future work on ttd@a.a=or one thing, the disc-to-square mappingwieat
presented here is pretty simple. It is neither aom&l nor equiareal. Such mappings have been studie
and discussed in the computer graphics literaftirdtfwould also be interesting to apply our magpto
discs other than azimuthal projections of sphefes.example, it would be interesting to see Essher’
circle limit drawings stretched to a square.
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Figure 9: Adjusting the blend parameter of the rectified azimuthal projection.
* Note: Being fully equiareal requires using a different disc-to-square mapping than the one mentioned in this paper.

7. Summary and Conclusion

We presented the use of a rectified azimuthal ptigie for creating revolvable panoramas with a
simulated overhead view of indoor scenes. The nimmiavation of our technique is the use of a blended
azimuthal projection in conjunction with a novebkdito-square mapping algorithm. Finally, the main
message of this paper is to convey the importahtieeocompromise between being equiareal and being
conformal in spherical panorama projections. Cangdity is simply not good enough for indoor scenes!
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