Visualizing 3-Dimensional Manifolds

Dugan J. Hammock Dept. of Mathematics, University of Massachusetts Lederle Graduate Research Tower, Amherst, MA 01003-9305, USA hammock@math.umass.edu

Abstract

Given a parametrized 3-dimensional manifold sitting in 4-dimensional space, we wish to visualize it by looking at its intersections with 3-dimensional hyperplanes. The intersections are 2-dimensional surfaces in 4-space which can then be projected into 3-space for visualization. In this paper I present an algorithm for displaying these surfaces of intersection using computer plotting applications (e.g. *Mathematica*, MATLAB, etc.).

Methodology

Let $\varphi: U \to \mathcal{M} \subset \mathbb{R}^4$ be a parametrization of a 3-manifold \mathcal{M} where $U \subset \mathbb{R}^3$ is a region in the parameter space of φ . Let $f: \mathbb{R}^4 \to \mathbb{R}$ be a smooth function whose differential Df never vanishes, so that the level sets $f^{-1}(c)$ are 3-dimensional hypersurfaces in \mathbb{R}^4 . For this paper, f is taken to be the dot product $f(\vec{v}) = \vec{\eta} \cdot \vec{v}$ for some nonzero vector $\vec{\eta} \in \mathbb{R}^4$; the level sets $f^{-1}(c)$ are the hyperplanes in \mathbb{R}^4 perpendicular to $\vec{\eta}$. Let $\pi: \mathbb{R}^4 \to \mathbb{R}^3$ be some projection or mapping, for this paper π is taken to be the projection onto the xyz-hyperplane given by $\pi(x, y, z, w) = (x, y, z)$.

Let $c \in \mathbb{R}$ be some value and consider the hypersurface $f^{-1}(c) \subset \mathbb{R}^4$. We wish to compute the intersection $\mathcal{M}' = (\mathcal{M} \cap f^{-1}(c))$ and then project this surface from the ambient space \mathbb{R}^4 to \mathbb{R}^3 via the map π . The slice \mathcal{M}' is in general a 2-dimensional submanifold of \mathcal{M} , and its projected image $\pi(\mathcal{M}') = \pi(\mathcal{M} \cap f^{-1}(c)) \subset \mathbb{R}^3$ is what we wish to observe as a 2-dimensional manifold in 3-space.

Note that if \mathcal{M} is indeed parametrized by the patch $\varphi : U \to \mathcal{M}$, in particular if φ is onto, then every point $m \in \mathcal{M}$ has a preimage in the set U, so $\varphi(U)$ and \mathcal{M} are equal as sets. We may take the slice $\mathcal{M}' \subset \mathcal{M}$ and consider its preimage under φ as a subset $U' \subset U$ in the parameter sapce of φ . Let U' be defined in this way; then $U' \coloneqq \varphi^{-1}(\mathcal{M}') = \varphi^{-1}(f^{-1}(c) \cap \mathcal{M}) = (f \circ \varphi)^{-1}(c) \subset U \subset \mathbb{R}^3$.

The original intersection \mathcal{M}' can be recovered by mapping the set $U' \subset \mathbb{R}^3$ back into \mathbb{R}^4 via φ , since by definition we have $\varphi(U') = \varphi(\varphi^{-1}(\mathcal{M}')) = \mathcal{M}'$. Mathematically, this fact is a trivial consequence of the stipulation that φ is onto. Computationally, however, this is important because $U' = (f \circ \varphi)^{-1}(c)$ can be computed directly as a level set (or "isosurface") in the parameter space U inside \mathbb{R}^3 . Once U' is computed, $\mathcal{M}' = \varphi(U')$ is recovered by mapping U' back into \mathbb{R}^4 via φ ; from there we project \mathcal{M}' down to \mathbb{R}^3 via π . The projected image of the slice \mathcal{M}' is the set $\pi(\mathcal{M}') = \pi(\varphi(U')) = (\pi \circ \varphi)(U') = (\pi \circ \varphi) ((f \circ \varphi)^{-1}(c))$. Thus, $\pi(\mathcal{M}')$ is computed as the image of the isosurface $(f \circ \varphi)^{-1}(c) \subset \mathbb{R}^3$ under the map $(\pi \circ \varphi) : \mathbb{R}^3 \to \mathbb{R}^3$.

$$\mathbb{R}^{3} \xrightarrow{\varphi} \mathbb{R}^{4} \xrightarrow{f} \mathbb{R} \qquad U \xrightarrow{\varphi} \mathcal{M} \xrightarrow{f} \mathbb{R} \qquad \bigcup_{\substack{i \neq \varphi \\ \downarrow \pi \\ \mathbb{R}^{3}}} \mathcal{M} \xrightarrow{\chi} \mathbb{R}^{3} \qquad \mathbb{R}^{3} \qquad (\pi \circ \varphi)^{\searrow} \xrightarrow{\chi} \xrightarrow{\chi} \pi (\mathcal{M}')$$

Examples and Connections to Art

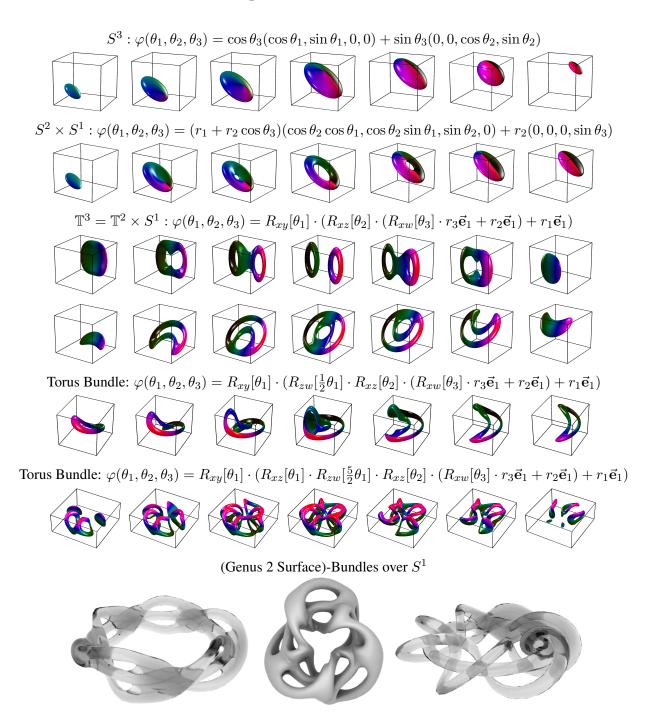


Figure 1: Slices of the manifolds S^3 , $S^2 \times S^1$, \mathbb{T}^3 , and two different \mathbb{T}^2 -bundles over S^1 . In the above parametrizations, $R_{ab}[\theta]$ denotes the rotation in the ab-plane by angle θ , and $\vec{\mathbf{e}}_1 = (1,0,0,0)$ denotes the x-coordinate vector. Also shown are the $\{w=0\}$ slices of various 3-manifolds parametrized as fiber bundles over S^1 whose fibers are (oriented) genus-2 surfaces which perform any number of twists about two rotational planes as they trace around the base S^1 . These are all examples of aesthetically pleasing and geometrically interesting shapes that can be generated efficiently as slices of 3-dimensional manifolds.