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Abstract
Given a parametrized 3-dimensional manifold sitting in 4-dimensional space, we wish to visualize it by looking at
its intersections with 3-dimensional hyperplanes. The intersections are 2-dimensional surfaces in 4-space which can
then be projected into 3-space for visualization. In this paper I present an algorithm for displaying these surfaces of
intersection using computer plotting applications (e.g. Mathematica, MATLAB, etc.).

Methodology

Let ϕ : U →M ⊂ R4 be a parametrization of a 3-manifoldM where U ⊂ R3 is a region in the parameter
space of ϕ. Let f : R4 → R be a smooth function whose differential Df never vanishes, so that the
level sets f−1(c) are 3-dimensional hypersurfaces in R4. For this paper, f is taken to be the dot product
f(~v) = ~η · ~v for some nonzero vector ~η ∈ R4; the level sets f−1(c) are the hyperplanes in R4 perpendicular
to ~η. Let π : R4 → R3 be some projection or mapping, for this paper π is taken to be the projection onto the
xyz-hyperplane given by π(x, y, z, w) = (x, y, z).

Let c ∈ R be some value and consider the hypersurface f−1(c) ⊂ R4. We wish to compute the
intersection M′ = (M∩ f−1(c)) and then project this surface from the ambient space R4 to R3 via the
map π. The sliceM′ is in general a 2-dimensional submanifold ofM, and its projected image π(M′) =
π(M∩ f−1(c)) ⊂ R3 is what we wish to observe as a 2-dimensional manifold in 3-space.

Note that ifM is indeed parametrized by the patch ϕ : U →M, in particular if ϕ is onto, then every
pointm ∈M has a preimage in the set U , so ϕ(U) andM are equal as sets. We may take the sliceM′ ⊂M
and consider its preimage under ϕ as a subset U ′ ⊂ U in the parameter sapce of ϕ. Let U ′ be defined in this
way; then U ′ := ϕ−1(M′) = ϕ−1(f−1(c) ∩M) = (f ◦ ϕ)−1(c) ⊂ U ⊂ R3.

The original intersectionM′ can be recovered by mapping the set U ′ ⊂ R3 back into R4 via ϕ, since
by definition we have ϕ(U ′) = ϕ(ϕ−1(M′)) = M′. Mathematically, this fact is a trivial consequence of
the stipulation that ϕ is onto. Computationally, however, this is important because U ′ = (f ◦ϕ)−1(c) can be
computed directly as a level set (or “isosurface”) in the parameter space U inside R3. Once U ′ is computed,
M′ = ϕ(U ′) is recovered by mapping U ′ back into R4 via ϕ; from there we projectM′ down to R3 via π.
The projected image of the sliceM′ is the set π(M′) = π(ϕ(U ′)) = (π ◦ϕ)(U ′) = (π ◦ϕ)

(
(f ◦ ϕ)−1(c)

)
.

Thus, π(M′) is computed as the image of the isosurface (f◦ϕ)−1(c) ⊂ R3 under the map (π◦ϕ) : R3 → R3.
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Examples and Connections to Art

S3 : ϕ(θ1, θ2, θ3) = cos θ3(cos θ1, sin θ1, 0, 0) + sin θ3(0, 0, cos θ2, sin θ2)

S2 × S1 : ϕ(θ1, θ2, θ3) = (r1 + r2 cos θ3)(cos θ2 cos θ1, cos θ2 sin θ1, sin θ2, 0) + r2(0, 0, 0, sin θ3)

T3 = T2 × S1 : ϕ(θ1, θ2, θ3) = Rxy[θ1] · (Rxz[θ2] · (Rxw[θ3] · r3~e1 + r2~e1) + r1~e1)

Torus Bundle: ϕ(θ1, θ2, θ3) = Rxy[θ1] · (Rzw[
1
2θ1] ·Rxz[θ2] · (Rxw[θ3] · r3~e1 + r2~e1) + r1~e1)

Torus Bundle: ϕ(θ1, θ2, θ3) = Rxy[θ1] · (Rxz[θ1] ·Rzw[
5
2θ1] ·Rxz[θ2] · (Rxw[θ3] · r3~e1 + r2~e1) + r1~e1)

(Genus 2 Surface)-Bundles over S1

Figure 1 : Slices of the manifolds S3, S2 × S1, T3, and two different T2-bundles over S1.
In the above parametrizations, Rab[θ] denotes the rotation in the ab-plane by angle θ, and
~e1 = (1, 0, 0, 0) denotes the x-coordinate vector. Also shown are the {w=0} slices of various
3-manifolds parametrized as fiber bundles over S1 whose fibers are (oriented) genus-2 surfaces
which perform any number of twists about two rotational planes as they trace around the base S1.
These are all examples of aesthetically pleasing and geometrically interesting shapes that can be
generated efficiently as slices of 3-dimensional manifolds.
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