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Abstract

Given a parametrized 3-dimensional manifold sitting in 4-dimensional space, we wish to visualize it by looking at
its intersections with 3-dimensional hyperplanes. The intersections are 2-dimensional surfaces in 4-space which can
then be projected into 3-space for visualization. In this paper I present an algorithm for displaying these surfaces of
intersection using computer plotting applications (e.g. Mathematica, MATLAB, etc.).

Methodology

Let o : U — M C R* be a parametrization of a 3-manifold M where U C R3 is a region in the parameter
space of . Let f : R* — R be a smooth function whose differential D f never vanishes, so that the
level sets f~!(c) are 3-dimensional hypersurfaces in R*. For this paper, f is taken to be the dot product
f(¥) = 77 - ¥ for some nonzero vector ;7 € R*; the level sets f~!(c) are the hyperplanes in R* perpendicular
to 77. Let 7 : R* — R3 be some projection or mapping, for this paper 7 is taken to be the projection onto the
xyz-hyperplane given by 7(x,y, z,w) = (z,y, 2).

Let ¢ € R be some value and consider the hypersurface f~'(c) C R* We wish to compute the
intersection M’ = (M N f~!(c)) and then project this surface from the ambient space R* to R? via the
map 7. The slice M’ is in general a 2-dimensional submanifold of M, and its projected image m(M') =
m(MnN f~1(ec)) C R? is what we wish to observe as a 2-dimensional manifold in 3-space.

Note that if M is indeed parametrized by the patch ¢ : U — M, in particular if ¢ is onto, then every
point m € M has a preimage in the set U, so ¢(U) and M are equal as sets. We may take the slice M’ C M
and consider its preimage under ¢ as a subset U’ C U in the parameter sapce of ¢. Let U’ be defined in this
way; then U’ := o1 (M') = o 1 (f Y e)N M) = (fop)l(c) cU CR3.

The original intersection M’ can be recovered by mapping the set U’ C R3 back into R* via ¢, since
by definition we have o(U’) = (¢~ 1(M’)) = M’. Mathematically, this fact is a trivial consequence of
the stipulation that ¢ is onto. Computationally, however, this is important because U’ = (f o ¢)~!(c) can be
computed directly as a level set (or “isosurface”) in the parameter space U inside R®. Once U’ is computed,
M’ = ¢(U") is recovered by mapping U’ back into R* via ; from there we project M’ down to R? via 7.
The projected image of the slice M is the set m(M’) = m(o(U")) = (ro)(U’) = (mop) ((f o) (c)).
Thus, (M) is computed as the image of the isosurface (fop) ™! (c) C R3 under the map (royp) : R? — R3.
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Examples and Connections to Art

(01, 02,03) = cosfs(cos b1,sin 61, 0,0) + sin 03(0, 0, cos fo, sin H2)

@@@@@@@

2 % St ©(01,02,03) = (r1 + ro cos 03)(cos O3 cos b1, cos O3 sin 01, sin O, 0) + 12(0, 0, 0, sin f3)
=T? x St ‘917 0, 93 :ry 01 a:z 92 a:w 03 - 1361 + T261 + 7’161

0% 0Na .
A Ao QoY .

Torus Bundle: () 91, 92, 93 Ty 91] W 01] R, 92 oW 9 7“381 4 7r9671) + ’1"181

~ e >

Torus Bundle: @ 91, 02, 03 Ty 01 Tz Tw 93 r3e; + r2e1 + rlel)

@@@@@@

(Genus 2 Surface)-Bundles over S*
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Figure 1: Slices of the manifolds S, S? x S', T3, and two different T?-bundles over S'.
In the above parametrizations, Rgp|0] denotes the rotation in the ab-plane by angle 0, and
€1 = (1,0,0,0) denotes the x-coordinate vector. Also shown are the {w=0} slices of various
3-manifolds parametrized as fiber bundles over S' whose fibers are (oriented) genus-2 surfaces
which perform any number of twists about two rotational planes as they trace around the base S*.
These are all examples of aesthetically pleasing and geometrically interesting shapes that can be
generated efficiently as slices of 3-dimensional manifolds.
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