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Abstract 
 

The Cokwe people of Africa developed a drawing technique that creates monolinear curves (Eulerian circuits) 
within a grid of dots where the curves are both symmetric and follow tightly constrained rules. Inspired by these 
designs, including some that contain wallpaper designs, we search for monolinear curves that abide by the Chokwe 
drawing constraints and which exhibit the 12 different wallpaper symmetry groups with rectangular translation 
lattices. In particular, we search for families of such curves that remain monolinear for arbitrarily large rectangles. 
We show that such families exist on sets of n x m rectangles of positive density among the set of all rectangles. 

 
 

1. Introduction 
 
In past generations, when the Chokwe (Tshokwe/Cokwe) and neighboring peoples in eastern Angola and 
northwestern Zambia would gather at meeting places, storytellers would draw a continuous path in the 
sand to illustrate their story. The drawings, called lusona (singular) or sona (plural) accompanied fables, 
proverbs, games, riddles, and animal descriptions. These are often complex closed curved paths that can 
be traced in a continuous monolinear motion, where the path encloses each point in a square lattice of 
points set in the sand by the storyteller preparing the story. Mathematician Paulus Gerdes has studied sona 
for over 25 years, and shared many of their interesting mathematical properties in his publications. He 
uses the term mirror curve for a wide-spread class of sona whose curves obey the law of reflection (angle 
of incidence equals angle of reflection) when they encounter the bounding rectangle or a “mirror wall” 
placed within the lattice of points. [4], [5], [6], [7].  
 

In examining the traditional sona, and other designs of Gerdes in the sona tradition, I noticed many 
that contained repeating patterns. Earlier, I investigated strip patterns of these designs (see [2]); here I 
look at traditional sona and invented sona that contain periodic plane patterns. The question I investigate 
is whether one can find families of sona that essentially contain a given plane pattern for arbitrarily large 
sizes of rectangles. Such designs cannot contain 3-fold or 6-fold rotations, hence we are limited to the 12 
“rectangular” symmetry groups: p1, p2, pg, pm, cm, pgg, pmm, cmm, pmg, p4, p4g, and p4m. [11]  
 
 

2.  An Algorithm for Producing Sona 
 
Gerdes devised the following algorithm to produce sona, based on a mnemonic device we believe was 
used by the Chokwe sona drawing masters. Begin with a 2m x 2n rectangular grid of unit squares, and 
place a dot at the center of each of the mn 2 x 2 sub-squares, as shown in Figure 1a for a 6 x 10 rectangle. 
Then place 2-unit long line segments on edges of some of the 2 x 2 sub-squares. These segments will act 
as 2-sided mirror walls; the bounding rectangle is also a mirror wall. Begin a rectilinear path (such as 
traced by a light ray) at the midpoint of an (outer) edge of one of the 2 x 2 sub-squares, traveling in a 
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direction that makes a 45o angle with the sides of the rectangle. Each time the path encounters a mirror 
wall it bounces (reflects) and continues until it produces a continuous closed path, as shown in Figure 1b.  
 

 

      

The mirror curve in Figure 1b is a monolinear path in which every unit square in the grid is entered 
and exited exactly once, and each dot is completely enclosed by the path. The Chokwe artists do not draw 
rectilinear paths, but instead trace graceful paths following that route, but replacing sharp 90o corners by 
curves. The lusona in Figure 1c is equivalent to that in 1b, but needs no arrows since the locations of the 
mirror walls and the bounding walls are clear from the curve itself (they are not drawn by the artist). In 
this path, every dot is completely “embraced” by the crossing curves of the path.  
 

Chokwe artists used a variety of dot layouts, but we consider only these “rectangular mirror curves.” 
The size of the lattice of dots and the placement of the mirror walls determines the number of components 
(connected closed paths) in a full mirror curve, that is, one that completely encloses each dot. While some 
Chokwe sona use more than a single component, Gerdes [7] has shown that the majority of their sona are 
monolinear, and will be our focus here. Bain [1] describes a related construction process for Celtic knots, 
which can be interpreted as placing mirror walls from one dot to another. Chokwe art occasionally used 
such mirror walls as well, but the large majority of their designs use walls placed as shown here, and we 
limit ourselves to these types of mirror curves, which Gerdes [4] calls “regular mirror curves”.  
 
 

3.  Wallpaper Patterns from Sona 
 
It is well known that the mirror curve of size n x m with no interior 
mirrors will consist of gcd(n, m) components. Thus the 3 x 5 mirror 
curve of this type (Figure 2) is monolinear, and its interior shows the 
familiar p4m wallpaper pattern of squares. Since this design can be 
repeated with larger and larger dimensions of rectangles that are still 
monolinear curves, it is natural to think of the full family of such 
curves as representing a p4m design of monolinear mirror curves. 
Such rectangles are common, and we wish to formalize their 
frequency for comparison with other families of rectangles 
representing other wallpaper patterns. 
 

If we let R(N) be the set of all n x m rectangles with n, m ! N, then we can describe the asymptotic 

density of a family of rectangles F as:  
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random numbers less than a fixed N will be relatively prime is 6/"2, hence the asymptotic density of this 
family of monolinear sona, representing p4m, is about 61%. This then sets a goal of our investigations:  

Figure 1: Views of a mirror curve in a 3 x 5 rectangle. (a) The square grid, which we imagine, and the dot 
layout, which are placed by the Chokwe artist. (b) Both the bounding and internal mirror walls, off which 
the curve bounces, following the arrows. (c) The monolinear curve (in black) drawn by a Chokwe artist. 

Figure 2: A 3 x 5 lusona with no 
interior mirrors; its interior is 
part of a p4m wallpaper pattern. 

 

Chavey

346



To find families of rectangular mirror curves (with some fixed pattern of mirrors) whose 
interior design is part of a wallpaper pattern, such that the asymptotic density of the 
monolinear rectangular curves within all such rectangular mirror curves is positive.  
 
The traditional Chokwe sona known as a “Chased Chicken” 

(Figure 3) have been recorded in at least three sizes: 5 x 6; 7 x 8; and 9 x 
10. [3][9][10]. Figure 3 shows one of size 7 x 8; its interior is clearly 
part of a p2 wallpaper pattern. Gerdes has shown that the Chased 
Chicken family of sona are monolinear mirror curves when they have 
size (2m+1) x 2n, and gcd(m+1, n+1) = 1. This provides a family of 
monolinear mirror curves with symmetry group p2 and asymptotic 
density of 15.2%. (Figure 3 is not actually monolinear, probably due to 
an error. Gerdes [7] reconstructs what was probably the original sona.) 
 

Rectangular grids, such as the dot layouts used for these sona, 
cannot have rotations points of 1/3 or 1/6. Thus only 12 of the 17 
wallpaper groups, listed in the introduction, can be represented by 
families of sona. These previously classified families of sona represent 
two of these wallpaper groups, leaving 10 more to investigate. 

 
 

4. The Pumping Lemma for Mirror Curves 
 
Empirically, there seem to be several families of sona representing the various symmetry groups. Finding 
examples where we can prove which sizes work is more challenging. One effective tool is the lemma 
below. Gerdes [8] discovered this result independently in a “Circles of Interest” workshop in Africa. 
 

Given a mirror curve, we imagine slicing it into 
parallel strips created by cutting it along lines of edges of 
the square cells. The curve S of Figure 4, for example, has 
been cut into the vertical pieces A, B, C, and D by the 
three dashed lines shown, and we write this as S = ABCD. 
In some cases, we can take pairs of strips of the same 
height and combine them to create either a larger strip or a 
full mirror curve. In combining strips X and Y to form a 
larger strip XY, the right side of X and the left side of Y 
must reflect from the same mirror walls. In Figure 4, all 3 
cutting lines hit mirror walls at exactly the same height, 
hence we can cut out strips B and C and combine them in 
various ways with strips A and D. Under certain 
circumstances, it is possible to guarantee that combinations 
of these strips will produce monolinear mirror curves.  
 
The Pumping Lemma: Let S be a k-component mirror curve cut into three strips A, B, and C by the two 
parallel lines L1 and L2, so that S = ABC, and where: 

1. The mirror walls of S that lie on L1 and L2 are at exactly the same heights; 
2. No line of S is completely contained inside strip B; and 
3. Every line of S that enters B on the left exits it on the right at the same height, and traveling in the 

same direction, i.e. either both lines are directed 45° up (to the right) or 45° down (to the right). 
Then all curves ABiC are also k-component mirror curves, for any i # 0, where Bi denotes i copies of B. 

Figure 4: A monolinear mirror curve that 
represents symmetry group cm. The union 
of strips B and C meet the conditions of the 
Pumping Lemma. 

Figure 3: The traditional 
“Chased Chicken” sona 
represent a p2 wallpaper 
pattern. From [1]. 
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We call this the “pumping lemma” (after a similarly named theorem in computer science) because 
copies of B can be “pumped in” to the inside of the sona, or the single original strip can be “pumped out”.  
 
 Proof: By condition 1, the number of lines coming into B on the left 

must be exactly the same as the number leaving B on the right. With 
condition 3, this means that every line in B that meets the right edge 
of B must have come from an edge that entered B on the left. From 
this we can conclude that there can be no line of Si completely 

contained inside the sequence of strips Bi. If there were, then that 
line would have a left-most strip Bj through which it traveled, and 
hence by condition 2 it would also travel through strip Bj+1, which 

would violate our second sentence.  
  Now each line of S that enters B on the left at height h also 

exits it at height h (see Figure 5 for some examples). Continuing 
through copies of B, that line would enter the left-most edge of Bi 
at height h and leave the full Bi on the right at the same height. 
Thus regardless of the number of copies of B (including none), 
lines in A and C will be connected in the same ways, in exactly the 
same order. Thus these lines, and their connecting segments 
through Bi, will create the same number of total components as in 
S. By the previous paragraph, there can be no lines of Si not 
included in this count, hence Si is a k-component mirror curve.   ! 

 
We can use this lemma to analyze several families of mirror 

curves. We first verify a conjecture of Gerdes [7] on the traditional 
sona design “The Lion’s Stomach”. These sona exist for any rectangle 
with an odd number of columns of dots and at least two rows of dots. 
Gerdes conjectured that if a “Lion’s Stomach” lusona has width n = 2k 
+ 1 and height m, then the number of components of the lusona curve 
will be 1 when k is even, and m when k is odd. We show this is true. 
 

Figure 6 shows the 6 x 9 Lion’s Stomach lusona in two views. The 
top shows the lusona without the mirror walls. The bottom shows the 
lusona with the mirror walls that determine the drawing of the design, 
and we show the removal of a central strip of width 4 that meets the requirements of the Pumping 
Lemma. For ease of verification, we have shown only four of the curves that join the remaining left and 
right strip; all of the undrawn curves can be seen (from the positions of the mirror walls) to be equivalent 
to one of these. The Pumping Lemma tells us that we can remove (or add) such strips from this lusona 
without changing the number of components in the design. More formally: 
 
Corollary: If S is a Lion’s Stomach lusona of width n = 4k + 1 (respectively 4k+3) and height m, then it 
has the same number of components as a Lion’s Stomach lusona of width 5 (resp. 3) and height m.  
 

Thus we need only understand Lion’s Stomach sona for widths 3 and 5, to understand all such sona. 
We show the 5 x 3 and 5 x 5 Lion’s Stomach in Figure 7. It is easy to see that the pattern of walls in the m x 

3 Lion’s Stomach (Figure 7a) requires m curves to be drawn, thus demonstrating this part of the 
conjecture. The 5 x 5 lusona (Figure 7b) is monolinear. Figure 7c shows a segment of this curve in thick 
green. It is the only portion of the curve that traverses the bottom row of dots. If we replace this green 
segment with the one in Figure 7d, which starts and ends in the same places as the removed segment, we 

Figure 5: The conditions for 
the pumping lemma to apply. 

Figure 6: The "Lion's 
Stomach" design satisfies the 
conditions of the Pumping 
Lemma with a strip of width 4. 
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have drawn the 4 x 5 Lion’s Stomach lusona having the same number of components (i.e. one). Thus we 
have proved Gerdes’ conjecture: 
 
Theorem: A “Lion’s Stomach” sona of width 4k+1 and any height, is monolinear. A “Lion’s Stomach” 
lusona of width 4k + 3 and height m has m components.  
 

This gives a family of monolinear mirror curves representing pmm, with asymptotic density 25%.  
 

 
Figure 7: On the left are Lion's Stomach sona of size 5 x 3 and 5 x 5. On the right is the reduction of the 
5 x 5 Lion's Stomach design to the 4 x 5 design. 

 
 

5. New Families of Monolinear Wallpaper Mirror Curves 
 
We begin by showing some families of mirror curves where the dimensions of rectangles that have monolinear 
curves can be determined directly from the pumping lemma. In all cases, the pumping lemma is applied to the 
strip indicated by lines above the design. This reduces the analysis to that of a single strip (or 2). In some cases, 
those strips can be reduced from one end, as in the previous section, by a further application of the pumping 
lemma on a vertical strip of the design, or by other individualized analysis. Generally, once the two-dimensional 
pattern has been reduced to a single fixed-width strip, the remainder of the proof is straight-forward. We omit 
the details of the proofs for these individual strips. 
 

The 9 x 13 mirror curve that illustrated the explanation of the pumping lemma (see Figures 4 and 5) is one 
of a family of monolinear mirror curves for sizes (4n+1) x (12m+1) and (4n+1) x (12m+9).  This family 
represents symmetry group cm, and has asymptotic density 4.2%. Figures 8-10 show families of curves that 
represent the wallpaper patterns pmg, cmm, and pm, with asymptotic densities 8.3%, 8.3%, and 4.2%. 
 
Figure 8: A family with symmetry group pmg, 
with pumping lemma strip of width 12. These 
are monolinear mirror curves for dimensions 
(2n+1) x (6m+1). Since the strip to which the 
pumping lemma is being applied has width 12, 
we start this construction with two base cases: 
(2n+1) x 7 and (2n+1) x 13. 
 

 
 
Figure 9: A family with symmetry group cmm, with pumping lemma 
strip of width 6. These are monolinear mirror curves for dimensions 
(2n+1) x 6m.  
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Figure 10: A family with symmetry group pm, 
with pumping lemma strip of width 12. These 
are monolinear mirror curves for dimensions 
(2n+1) x (12m+7). 

 
 
 

We can strengthen our use of the pumping lemma by modifying the designs being analyzed. If a “loop” 
surrounding a single dot in the mirror curve is cut off (and discarded) by adding an additional mirror at the 
location where that loop crosses itself, we have a curve that no longer embraces every dot in the rectangle. 
Nevertheless, the pumping lemma still applies to this curve, and may give us a proper mirror curve. Figure 11a 
gives a 10 x 9 example of a family of monolinear mirror curves with p1 symmetry. Figure 11b shows the mirror 
walls implicit in 11a, along with the mirror walls needed to remove the loops in each module of the curve. 
Figure 11b also shows the cuts for the pumping lemma, applied horizontally instead of vertically. Figure 11c 
shows the result of removing all three of those strips. The one region shown converts to the row of mirrors 
pointed to by those cut lines. The top and bottom rows will also convert into rows of mirrors. This reduction 
converts a design of this p1 family of size (3j+1) x (4k+1) into a Lion’s Stomach design of size (j+1) x (4k+1). 
Since all Lion’s Stomach designs of this size are monolinear, all of the p1 designs of the former size are 
monolinear. This family of sona have asymptotic density 8.3%. 
 

Figure 11: Removing loops to 
simplify the application of the 
pumping lemma. In this case, 
the pumping lemma is applied 
horizontally, and is used to 
reduce this p1 design to the 
Lion's Stomach design solved 
earlier. 
 

The argument above applies to any arrangement like this where the repeating module of the design has two 
simple loops embracing those two center points. In particular, the designs of Figure 12 below show designs with 
symmetry groups pg, pgg, and cm, all generating monolinear mirror curves for rectangles of dimensions (4k+1) 
x (3j+1), and with asymptotic density 8.3%. (The cm pattern repeats a symmetry group from above. But while 
this design has higher asymptotic density, we believe the earlier example is more aesthetically appealing.) 
 

 
Figure 12: Families of designs with symmetry groups pg, pgg, and cm respectively. 
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6. Four-Fold Symmetry 

 
To provide families of monolinear mirror curves with four-fold symmetry appears to require some additional 
techniques. Figure 13 shows a 9 x 13 example from a family of p4g designs. This family of designs was shown 
by Gerdes [5], and this analysis appears to be implicit in the work of Gerdes. In Figure 13a, we show the design, 
with the mirrors hidden. In Figure 14b, we show the placement of the mirrors, with only one-fourth of the 
drawing completed. It is easy to see from the symmetric placement of the mirrors (a p4g pattern itself) that this 
pattern would continue regardless of the number of columns. This partial drawing continues around the corner, 
ready to follow the same path through the rows of the design; it repeats twice more to continue around all four 
sides of the design. More formally, one can prove this by induction. This design will be a monolinear mirror 
curve for dimensions (4m+1) x (4n+1), with density 6.25%. 

 
 
 
 

 
 
 
 
 
 
 
 
Figure 13: (a) A family of mirror curves with p4g symmetry group. (b) The path for one-fourth of the drawing. 
 

Figure 14a shows a 15 x 20 example of a monolinear mirror curve with p4 symmetry. This is constructed 
from a set of square 5 x 5 modular pieces each with a central 4-fold rotation. These modules are connected at the 
midpoints of the edges of their bounding squares, creating additional 4-fold rotations centers at the corners 
where four modules meet. To understand when a rectangle built this way will be a monolinear curve, Figure 14b 
shows the replacement of three of these modules (one at an edge, one at a corner, and one in the interior of the 
design) by a more direct “shortcut” that goes to the same connection location on the boundary of the module. If 
all of the modules are replaced in this manner, we have exactly the same path as the “no mirrors” curve in 
Figure 2. Consequently, a mirror curve of this form of size 5n x 5m, will be monolinear only when the “no 
mirror” rectangle of size n x m is monolinear, that is, when gcd(n, m) = 1. This then gives us a family of 
monolinear mirror curves with symmetry group p4 with asymptotic density 2.4%. 
 
 

 
 
 
 

Figure 14: (a) A 15 x 20 example from a family of mirror curves with p4 symmetry.  
      (b) Replacing the 5 x 5 modules with simple curves that join points where the modules connect. 
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Summary 

 
For each of the 12 wallpaper symmetry groups that can have a rectangular translation lattice, we found 
families of monolinear mirror curves, of positive asymptotic density within the set of all rectangles of a 
bounded size, that represent that symmetry. Many of these drawings generate aesthetically pleasing 
Eulerian circuits. There remains open the possibility of families of sona-like drawings with higher 
density than discovered here. For example, for p4 there are likely other families of p4-symmetric, 
monolinear mirror curves with the artistic appeal of that in Figure 14. We suspect that a rigorous 
investigation of small modules as repetition units, laid out under various symmetry groups, would 
reveal additional attractive mirror curves. Our investigation here was limited to mirror walls placed on 
the edges of the internal squares of the bounding rectangle, which is the most common placement 
among the Chokwe artists. It could be fruitful to investigate the use of mirror walls that are 
perpendicular bisectors of those edges, as is often implicit in Celtic knots. 
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