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Abstract

The 6-ring is a tubular surface of genus 13, obtained by glt@gether twenty-four 12-gons which follows the
regularity of the map R12'{12 3}. It is constructed from six rings of two Borromean rings, ke twenty-four
elements of an oriented cube and matches nicely with thédsieg of R132'{12,3}. The 6-ring has minimal twists
and geometrically equivalent sets of four 12-gons. We eitpliconstruct this highly symmetric surface from two
Borromean rings together with a detailed mapping of the di2sg

(b)
Figure 1: The6-ring — a 3D realization of the regular maplR.2'{12 3}.

I ntroduction

Suppose we have twenty-four 12-gons and we want to glue thaheia edges so that any three of them
share a vertex. There are several ways to solve such a problgnwe are interested in finding the most
symmetric and the most visually appealing solution. Statede generally: Given the triple~, p,q), vi-
sualize a compact surface with F faces such that each facp bdges and any faces share a common
vertex.

Consider a 3D model of the cube. Explicitly count the numbieitsofaces and edges (see Figure 2
(a)). So the cube is a solution to the triglé 4,3). In our problem we begin with a triple, for example,
(4,4,4) and we must find a corresponding 3D model. One solution woeili Istart with four squares in the
plane then glue them around a vertex with the correct ideatitin at the boundary. This is a topological
torus which is anon-compacsolution of our puzzle (Figure 2 (b)). A 3D compact model isapfred by using
the parametric equation of the torus (Figure 2 (c)). We ceuténd this idea to solve the general problem, but
itis difficult, if not impossible, to have a closed parame&quation of such a complex surface. Nevertheless,
for any (F, p,q), a non-compact solution exists. We give an example of aisaluf the triple(16,3,8) in
Figure 2 (d), where the identifications at the boundary havbket carefully chosen in order to make the
surface topologically (but not geometrically) closed andmtable. In this paper, we give a compact solution
of (24,12, 3) with maximal symmetry. The mathematical statement of thiblem is to find a 3D embedding
of the regular map R123'{12 3}.

Aregular map is a family of equivalent polygons glued togetio form a compact 2-manifold which is
topologically vertex-, edge- and face-transitive. Somé kveown regular maps are the Platonic solids. The
th reflexible regular map of gengss denoted by B.i{ p,q}, wherep andq are the same as in our puzzle. The
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dual regular map is denoted bygR{q, p}. There are, for example, 12 regular maps (including dudls) o
genus 2, and the number increases for higher genus; for déhtisere are 44. Visualizing such highly
symmetric surface is challenging but by using the Borroméags, we propose a model of R23having
the twenty-four elements of an oriented cube.
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Figure 2: (a) the Cube(6,4,3), (b) a non-compact torus, (c) a compact torus and (d) a non-
compact solution of16,3,8).

A v

The Borromean rings, named after the Borromeo family iryJtate three rings link together such that
removing one of the ring leaves the other two unlinked. Theyaasimple example of Brunnian links. The
Borromean rings have been used in different contexts foryntamturies as a sign of strength through
unity. They already appeared in 7 th century in Stona Hamragrthe Valknut (a symbol consisting of
three interlocked triangles, see Figure 3). They have beexample, used as a symbol of the Christian
Trinity and as a label of the Ballantine’s beer. In 2006, dttigersion of the Borromean rings has been
adopted by the International Mathematical Union for its hego. John Sullivan [18] said théitrepresents
the interconnectedness not only of the various fields of emaditics, but also of the mathematical community
around the world

A

Figure 3: Examples of Borromean rings (from left to right): the ValkiuStora Hammars, the
Christian Trinity, Ballantine’s beer label (image sourogikipedia [19]) and the IMU logo.

Related works and contributions

Related works. Coxeter and Moser [3] is a nice introductory book about sytmyngroups and regular
maps. The visualization of regular maps is still an active@eagch subject. The first attempt goes back to
Carlo Séquin [15] inspired by Helaman Ferguson’s scuptiihe Eightfold Way", presented in Levy [7].
Séquin’s investigations ([15], [16], [17]) are a huge s®uof inspiration to start modelling regular maps. He
uses all possible modelling techniques, including sketchaper models and Styrofoam, to finally obtain a
computer generated model. He succeeded in solving sevaas drom genus 2 to genus 5 but each regu-
lar map is handled separately. An automatic algorithm wagek Jack van Wijk [8] suggested a heuristic
procedure to visualize some of the regular maps. His teclemsgmbines computational group theory, hyper-
bolic geometry and computer graphics. His method succeedslving several cases, but was too restrictive
to handle even some of the genus 2 regular maps. In 2010irg&qlifilled the gaps missing in the genus 2
and genus 5 regular maps. To the best of our knowledge, no reaElelmhave been published since then. In
our previous work [11], we suggest an energy based relaxatiheme to improve the shape of van Wijk’s
candidate regular maps. This energy does not only impraeytmmetry of the shape but also optimizes the
faces of the regular map to be as geometrically equivalepbssible.
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Contributions: We take one of van Wijk’s solution of R13.2' and show that byngsour spring energy
based relaxation scheme with topological constraints, i the 6-ring (Figure 1) as a minimizer. We
show that the 6-ring can be constructed geometrically fraim Borromean rings and we give a simple
visual process (without using any group theoretical ressiin [8]) of gluing the twenty-four 12-gons on the
resulting surface. Finally, we show that by choosing a &Gt of R13.2’, we can choose a set of four 3D
12-gons as a fundamental domain.

Construction of a genus 13 surface

In this section, we present several ways of constructingnaigé3 surface and describe their properties so
that we can decide which of them work best as a space model PRBut first, we review some basic
results from surface topology. The gemusf a surface is the number of “tunnels” in that surface. This loe
computed by the Euler characteristic, which for a compatasa is defined by = 2— 2g. The constany is
obtained by the relatioy =V — E +F, whereV is the number of vertice§ the number of edges arkdthe
number of faces of the surface. The Euler characteristic@atant that describes the shape of a topological
space independent of its geometric properties. It can be, dse example, as a necessary and sufficient
condition for two compact surfaces to be homeomorphic (dicoous deformation of one shape to another,
for example, a tea pot and a donut). For a low genus tubuldacayrit is easy to determine its genus, by
counting the number of tunnels in the surface. For high gémudar surfaces, we use the following method
to find their genus. We patrtition each tube into two half tubes we have 2 edges and 2 faces—and each
junction into 2 vertices and; edges, where; is the number of tubes meeting at the junctijortysing the

Euler characteristic, we can derive the following relatign= 1/22'1-\'j:“1° aj — Njunc+ 1, whereNjync is the
number of junctions of the surface. This is equivalent tofttst Betti number or the cyclomatic number,
g=E -V +1 by considering each tube as an edge and each junction ater.ver

To generate high genus surfaces, a common technique is tolugar structures obtained from the edge
graph of already existing maps. In general, the map doeseawit to be regular and we should not restrict
ourselves to tubular surfaces; artificial high genus serfan also be generated as in Figure 4 (c). van Wijk
suggested a selection criteria in order to map a given tdimbigh genus surfaces, which we adopt here. This
can be summarized by two fundamental conditions: (i) eithemp-gons are centered at the junctions and
the number of tubes meeting at the junctions is a divisqr @f (ii) some vertices of th@-gons are placed at
the junctions and the number of tubes meeting at the jurstitividesg. Even though these conditions are
too restrictive and even fail to solve many cases, they agalasteps to glue tiles on tubular surfaces. For
more details we refer to [8].

Let us now give several genus 13 surfaces and see which oherofagree with (i), (i) and R13.2’. Our
first candidate is the most symmetrical genus 13 surfaces dtbtained from a truncated cube called a
CubeOctahedrowhich inherits the full symmetry of the cube, see Figure 4Y# call it Tub(CubeOcta). Our
second candidate has less symmetry, obtained from a hasohgtl14} and has only one C13-axis, see Fig-
ure 4 (b). We call it Tub(Hoso-14). And our last candidate manually designed surface which also has a
C13-axis but with a different topology at the junctions, ségure 4 (c). We call itMy3. All these surfaces
have genus 13 but with different junctions.

Condition (i) already fails for all three of them since Tulbfi@Octa) has ten junctions, Tube(Hoso-14)
has only two, andV;3 has 14, none of which has the desired 12 (each junction stlouiin two 12-gons
of R13.2"). Condition (ii) does not work either since 4 doed divide 3 (for the case of Tub(CubeOcta))
and 14 does not divide 3 (for the case of Tube(Hoso-IM)} has one junction consisting of 13 tubes and
13 junctions consisting of three tubes. They all divide ¢hpat the fact that it has different numbers of tubes
at the junctions makes it hard to imagine a natural procegfuofg the 12-gons on it. Hence, we exclude it
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from our search space.

(a) (b) (c) (d)
Figure 4: Examples of genus 13 surfaces obtained from a: (a) Cube®dtah, (b) hosohedron
{2,14}, (c) manual design and (d) R3{#,4}.

What we are looking for is a tubular surface having exacthjuttions and the number of incoming
tubes at each junction must be a divisor of 12. This is egentatio finding a surface with 12 vertices and
some number of faces such that 2,3,4,6 or 12 of them shardexvé&his space is huge but by restricting
ourselves top-gon faces, we can find a regular map with these propertiest’ 34} is an example of
one: it has 12 vertices and eight hexagons such that foureof tiways share a vertex. A space model of
it is depicted in Figure 14 of [8]. This model is obtained franmosohedroq 2,4} but we will use a model
obtained from a tetrahedron (see Figure 4 (d)) as a targeeimdg tubifying the edge graph of this map, we
obtain the desired genus 13 surface, which we call Tub(lR33Lr case analysis is an alternative view of
van Wijk’s method of generating regular maps. As we can s@a ffigure 4, although the surface suggested
in (d) fulfill all the conditions, it lacks symmetry and eleg. This is where van Wijk’s method fails. In
our earlier work [11], instead of using a direct tubificatmithe edge graph, we applied a spring relaxation
energy and let the tube deform accordingly. We will see inrthet paragraph that the tube frame of the
6-ring is a minimizer of Tub(R3.4).

(a) (b) (€)
Figure5: (a) R5.3{5,4} and its medial axis, (b) relaxation without constraints) felaxation
with constraints.

Energy based modelling: The idea is to consider each vertex as a charge particletairay its neigh-
bors and repulsed by all other vertices. The total energhisfdystem is given by

2
V] M

i;i; fr (X, %)) +i;igj fa(Xj, %)

where, fa(x,Xj) = H||x—X;||(x—X;) is the force of attraction exerted lyonxand f;(x,x;) = Km(xj —

x) is the force of repulsionH andK are constants defining the strength of the forces. This gnegsed by
Scharein [12] for relaxing knots in KnotPlot, with a knot g/preservation constraint. This energy is also used
in the smoothing of Seifert surfaces used by van Wijk and @amgLO]. For our purpose, this energy alone is
not enough to guarantee a non-self-intersecting surfaeeé¥d an extra topological constraint at the nodes

of the graph. Suppose thatis a node vertex and lifk) = {x1,...,X,} is the set of all vertices adjacent

E(G) =
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to x. Then, for a vertex; € link(v), we add a planarity constraint oisuch that for allx; € link(v), with

j #1, X exerts a force of magnitude(E\/sinz(Zni/n) — cog(2mi/n) —dij) onx;, whered;; is the euclidean
distance betweer andxj, L is a constant an& is the average edge length of the edge graph. There are
still some extra forces that we added to the system to have oamtrol of the final shape, more details can
be found in [11]. In Figure 5, we took the regular map RE534} and showed that without the topological
constraints at the node, the resulting minimized shape él&ingersections. This modified spring energy
works well and improves the symmetry of the regular maps istroases. The tubular shape of the 6-ring
is a minimizer ofE(G) applied to the edge graph of the model obtained in Figure 4T{® minimization
process is illustrated in Figure 6. Unfortunately, it is noique. Luckily the system did not get stuck at a
local minimum. This happens often in our experimentatiothwther shapes. Inspired by the symmetry of
the 6-ring, we were convinced that a more precise geomkgqaoach would be more convenient. We are
going to use two Borromean rings to achieve that.

\("7//‘ A& -
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Figure 6: Spring energy minimizatiorh applied to the medial ;1xis of(RBJZi;) to obtain the
shape of the 6-ring.

Using two Borromean rings. A way to generate the Borromean rings is to start with ansdliwith the
following parametric equation:

(X(u),y(u),z(u)) = (cosu,0,2sinu) 0<u<2m (1)

and perform successive 90 degree rotations around its ah@xis to obtain the other ellipses. This con-
struction is shown in Figure 7. We then take the final ring,lidage it and rotate the duplicated links around
the z-axis as shown in Figure 7 (d). The resulting tubular surthes has the links as its medial axis, has
genusg = 21. To derive a genus 13 surface, we remove eight of the pmetby not letting the two Bor-

o & @

(a) (b) (c) (d)
Figure 7: Construction of the Borromean rings from an ellipse and aug#ti surface obtained
from two Borromean rings.

romean rings intersect at some points; these intersedi@sarked with circles in Figure 7 (d). As a result,
we have only 12 junctions and we obtain our genus 13 surfdeeidea is to start with a non-planar ellipse
which looks like afigure-8in the xy-plane. Such ellipses can be parametrized by

(X(u),y(u),z(u)) = (acosu,bsin(2u),csinu), 0<u<2m, 2
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wherea > 0,b € R andc > 0. a andc are the radii of the ellipse araicontrols the flatness of thfegure-8

in the xy-plane. In our model, we choge=1,b = —1/5 andc = 2. We can see from Figure 8 (c) that there
are exactly 12 intersection points produced by the two Boaan rings. To obtain the final surface, we use
these Borromean rings as a medial axis and build a tube aibund

(@) (b)

Figure 8: The Borromean rings with non planar ellipses and the medi# af the 6-ring.

I ntuitive gluing of the 12-gons

In this section, we recall how to generate a non-compacesgpitation of R13.2’ in hyperbolic space as illus-
trated in Figure 2 (d). It is not possible to tessellate theesp with regular 12-gons, nor the Euclidean plane
since the angle at the vertices does not sum uptddwever, it is possible in the hyperbolic space. Bear-
don [1] is a good introductory book for hyperbolic geomeffire usual way of generating {p,q} tiling
of hyperbolic space is presented in Dunham [4]. His articlevioles a comprehensive way (with pseudo
code) to generate hyperbolic tilings. The algorithm, utfioately, only produces a universal covering (sev-
eral copies of the regular map), and finding one regular mapéh an infinite group is quite hard. A simple
method to generate regular maps is to use their symmetnypgibis usually denoted as a sgb| %) of
generatorss and relatorsZ. The symmetry group of all the regular maps of genus less3h@rhave been
enumerated by Conder in [2] in the form of generators andaedaR132' has the following symmetry
group,

SymR132) = (R ST|T%S3,(SR? (RT)?,RSR?SR 'SR SR, R'?).

Here,R, S are rotations and is a reflection. For a geometric definition of these isomstrsme for exam-
ple [11]. Sym(R13.2") is a finite group and its element repntatives can be enumerated using Advanced
Coset Enumerator (ACE) [6]. ACE gives the coset table of @mifimitely generated group. Using ACE,
we found that Sym(R13.2") has order 576. It can be realized @mngular tiling group in the hyperbolic
space obtained by a fundamental triangle which has armglesr/q and /2 (see Figure 9). This triangle
group can be partitioned into twenty-four 12-gons by takiing quotient of the subgrouid; = (R T) in
Sym(R132). According to Senechal [14], this induces a 24 symmetriorangs of the tiling group. We
can assign a unigue color to every four of these twenty-f@4gdns, by taking the quotient of the subgroup
Hy, = <R,T, SR3S> in Sym(R132'), which induces a 6-coloring of the map. This coloring teghe is called
left coset algorithmand is used to color hyperbolic patterns (see for examplasgs]). A nice feature of
this method is the possibility to extend the color symmeryhie universal covering of the map. The sym-
metry group of the regular map not only gives us a way to geadhe 12-gons but also provides us with
information on how these 12-gons should be glued togethénaahe color permutation at each vertex is
preserved. We choose the 6-coloring of the map since it reatoltely with the symmetry of the 6-ring.

Gluing the 12-gons. Once the neigbhoring information of the 12-gons are obthinethe hyperbolic
space, we can start to glue them on to the tubular surface. WMenly glue the four red tiles (see Figure 9
(c)) and generate the rest by applying rotations on thesddiirs Here a precise geometric construction of
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(a) (b) (©)
Figure 9: (a) A fundamental triangle having angte/2, 17/ p and /g, (b) a twenty-foud2-gons
partition of the triangular group and (b) the 6-coloring ofilB.2’.

the target surface is needed since the rotations should dygs¢o edges and cover the whole surface. For
each 3D rotation, we identify the corresponding rotatiorthi@ hyperbolic space. From here, the 12-gons
are considered to be an elastic fabric and are allowed torb&lséd and twisted during the gluing pro-
cess. We place the center of the tiles at the junctions andettiees are placed where two tubes meet at the
junctions. This process is summarized in Figure 10. To alits other 12-gons, we use the C4-axis of the
surface as in Figure 1 (b) to get the purple, grey and yellowgdias. This C4-axis is equivalent, in hyperbolic
space, to a clockwise rotation around the center of a greegofiZblack dot in Figure 9 (c)) with an angle
21t/ p. We use the C3-axis in Figure 1 (a) to get the green 12-gonshvidhequivalent, in hyperbolic space,
to a clockwise rotation around the vertex where a red, yedod green 12-gons meet (red dot in Figure 9
(c)) with an angle 2/g. All the remaining symmetry axes of the 6-ring can be idegdifin the same fashion
as a rotation in the hyperbolic space. A combination of theserotations gives the blue 12-gons and finally
we obtain a model of R13.2’ with, first, the same color perrioain the hyperbolic space and second, the
same number of symmetry elements which is in this case twienty

Conclusion

We presented a mathematical construction of the 6-ringglaljhsymmetric surface formed by twenty-four
12-gons. These 12-gons are glued together with a 6-col@mthgme according to the symmetry group of
R132'. The resulting faces of the map are not only topologicallyieajent but by taking appropriate starting
12-gons, all the remaining 12-gons can be obtained by ooimtiround some specific axis. We modelled the
Borromean rings with explicit formulae to derive the gendsaof the 6-ring. The harmony of the 6-ring
motivates us to further study and improve the symmetry ofttisting regular maps in the hope of finding
a more conceptual approach to tackle the general problensoélizing them. There are embeddings of
regular maps which have gltgons that are geometrically equivalent. Examples of thenslaown in Figure
13 of [8]. The 6-ring has four 12-gons out of twenty-four asfitndamental domain which is already good
for a genus 13 regular map. We would like to know if this is tlestbone can do, in other words, having
three or two or even one fundamental 12-gons on the embedélinige exercise would be to classify all the
existing embeddings having all or almost plgons geometrically equivalent. It would also be interegto
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explore other kind of knots and links to see what kind of gemsarface we will obtain from them.

Acknowledgement: This work is supported by the Berlin Mathematical School. Wdaild like to thank
Mimi Tsuruga for proofreadings and the reviewers for thaiuable criticism.

References

[1] Beardon A.F., The Geometry of Discrete Groufgringer VerlagNew York, 1983.

[2] Conder M,Regular Maps, August 2012,
http://www.math.auckland.ac.nz/~conder/OrientableRegularMaps301.txt.

[3] Coxeter H. and Moser W., Generators and Relations focieie GroupsSpringer Verlag 1957.

[4] Dunham D., Lindgren J. and Witte D, Creating Repeatingpéhpolic Patternsin Proc. SIGGRAPH
81, 15:215-223, 1981.

[5] de las Penas M.L.A.N., Felix R.P. and Laigo G.R, Colosiraf Hyperbolic Plane Crystallographic
PatternsZeitschrift fir Kristallographie 221:665-672, 2006.

[6] Havas G. and Ramsay C., ACE-Advanced Coset Enumerdiog, 2
http://ww.itee.uq.edu.au/~cram/ce.html.

[7] Levy S., The Eightfold Way: The Beauty of Klein's Quar@urve,Cambridge University Pres&999.

[8] van Wijk J. J., Symmetric Tiling of Closed Surfaces: \@simation of Regular Map$roc. SIGGRAPH
2009 49:1-12, 2009.

[9] van Wijk J. J. and Cohen A. M., Visualization of Seifertré&ces,|EEE Transactions on Visualization
and Computer Graphics 12:485-496, 2006.

[10] van Wijk J. J. and Cohen A. M., Visualization of the Gemtfi&kKnots, Proc. IEEE Conf. Visualizatign
567-574, 2005.

[11] Razafindrazaka F., Visualization of High Genus RegMlaps, master’s thesisreie Universitt Berlin,
2012,

http://page.mi.fu-berlin.de/faniry/files/faniry_masterThesis_2012.pdf.
[12] Scharein R. G., Interactive Topological Drawing, Pheldis, The University of British Colombia, 1998.
[13] Seifert H.,Uber das Geschlecht von Knotévath. Annalen.110:571-592, 1934.
[14] Senechal M., Color Symmetrgomput. Math. Appli¢.16:545-553, 1988.

[15] Séquin C. H., Patterns on the Genus-3 Klein quattid?roc. BRIDGES 2006 Conferenceondon,
245-254.

[16] Séquin C. H., Symmetric Embedding of Locally Regulamldrbolic Tilings,In Proc. BRIDGES 2007
ConferenceSan Sebastian, 379-388.

[17] Séquin C. H., My Search for Symmetrical Embeddings efjilar Maps,|n Proc. BRIDGES 2010
ConferenceHungary, 85-94.

[18] ICM proceedings, Opening Ceremony, 2006,
http://www.icm2006.0org/proceedings/Vol_I/2.pdf.

[19] Wikipedia, Borromean ringshttp://en.wikipedia.org/wiki/Borromean_rings, February
2013.

286



