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Abstract
The 6-ring is a tubular surface of genus 13, obtained by gluing together twenty-four 12-gons which follows the
regularity of the map R13.2′{12,3}. It is constructed from six rings of two Borromean rings, hasthe twenty-four
elements of an oriented cube and matches nicely with the 6-coloring of R13.2′{12,3}. The 6-ring has minimal twists
and geometrically equivalent sets of four 12-gons. We explicitly construct this highly symmetric surface from two
Borromean rings together with a detailed mapping of the 12-gons.

(a) (b) (c)
Figure 1 : The6-ring — a 3D realization of the regular map R13.2′{12,3}.

Introduction

Suppose we have twenty-four 12-gons and we want to glue them at their edges so that any three of them
share a vertex. There are several ways to solve such a problem, but we are interested in finding the most
symmetric and the most visually appealing solution. Statedmore generally: Given the triple(F, p,q), vi-
sualize a compact surface with F faces such that each face hasp edges and anyq faces share a common
vertex.

Consider a 3D model of the cube. Explicitly count the number of its faces and edges (see Figure 2
(a)). So the cube is a solution to the triple(6,4,3). In our problem we begin with a triple, for example,
(4,4,4) and we must find a corresponding 3D model. One solution would be to start with four squares in the
plane then glue them around a vertex with the correct identification at the boundary. This is a topological
torus which is anon-compactsolution of our puzzle (Figure 2 (b)). A 3D compact model is obtained by using
the parametric equation of the torus (Figure 2 (c)). We couldextend this idea to solve the general problem, but
it is difficult, if not impossible, to have a closed parametric equation of such a complex surface. Nevertheless,
for any (F, p,q), a non-compact solution exists. We give an example of a solution of the triple(16,3,8) in
Figure 2 (d), where the identifications at the boundary have to be carefully chosen in order to make the
surface topologically (but not geometrically) closed and orientable. In this paper, we give a compact solution
of (24,12,3) with maximal symmetry. The mathematical statement of this problem is to find a 3D embedding
of the regular map R13.2′{12,3}.

A regular map is a family of equivalent polygons glued together to form a compact 2-manifold which is
topologically vertex-, edge- and face-transitive. Some well known regular maps are the Platonic solids. Thei-
th reflexible regular map of genusg is denoted by Rg.i{p,q}, wherepandqare the same as in our puzzle. The
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dual regular map is denoted by Rg.i′{q, p}. There are, for example, 12 regular maps (including duals) of
genus 2, and the number increases for higher genus; for genus13 there are 44. Visualizing such highly
symmetric surface is challenging but by using the Borromeanrings, we propose a model of R13.2′ having
the twenty-four elements of an oriented cube.

(a) (b) (c) (d)
Figure 2 : (a) the Cube(6,4,3), (b) a non-compact torus, (c) a compact torus and (d) a non-
compact solution of(16,3,8).

The Borromean rings, named after the Borromeo family in Italy, are three rings link together such that
removing one of the ring leaves the other two unlinked. They are a simple example of Brunnian links. The
Borromean rings have been used in different contexts for many centuries as a sign of strength through
unity. They already appeared in 7 th century in Stona Hammersas the Valknut (a symbol consisting of
three interlocked triangles, see Figure 3). They have been,for example, used as a symbol of the Christian
Trinity and as a label of the Ballantine’s beer. In 2006, a tight version of the Borromean rings has been
adopted by the International Mathematical Union for its newlogo. John Sullivan [18] said thatIt represents
the interconnectedness not only of the various fields of mathematics, but also of the mathematical community
around the world.

Figure 3 : Examples of Borromean rings (from left to right): the Valknut in Stora Hammars, the
Christian Trinity, Ballantine’s beer label (image source:wikipedia [19]) and the IMU logo.

Related works and contributions

Related works: Coxeter and Moser [3] is a nice introductory book about symmetry groups and regular
maps. The visualization of regular maps is still an active research subject. The first attempt goes back to
Carlo Séquin [15] inspired by Helaman Ferguson’s sculpture “The Eightfold Way”, presented in Levy [7].
Séquin’s investigations ([15], [16], [17]) are a huge source of inspiration to start modelling regular maps. He
uses all possible modelling techniques, including sketches, paper models and Styrofoam, to finally obtain a
computer generated model. He succeeded in solving several cases from genus 2 to genus 5 but each regu-
lar map is handled separately. An automatic algorithm was desired. Jack van Wijk [8] suggested a heuristic
procedure to visualize some of the regular maps. His technique combines computational group theory, hyper-
bolic geometry and computer graphics. His method succeededin solving several cases, but was too restrictive
to handle even some of the genus 2 regular maps. In 2010, Séquin [17] filled the gaps missing in the genus 2
and genus 5 regular maps. To the best of our knowledge, no new models have been published since then. In
our previous work [11], we suggest an energy based relaxation scheme to improve the shape of van Wijk’s
candidate regular maps. This energy does not only improve the symmetry of the shape but also optimizes the
faces of the regular map to be as geometrically equivalent aspossible.
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Contributions: We take one of van Wijk’s solution of R13.2’ and show that by using our spring energy
based relaxation scheme with topological constraints, we obtain the 6-ring (Figure 1) as a minimizer. We
show that the 6-ring can be constructed geometrically from two Borromean rings and we give a simple
visual process (without using any group theoretical resultas in [8]) of gluing the twenty-four 12-gons on the
resulting surface. Finally, we show that by choosing a 6-coloring of R13.2’, we can choose a set of four 3D
12-gons as a fundamental domain.

Construction of a genus 13 surface

In this section, we present several ways of constructing a genus 13 surface and describe their properties so
that we can decide which of them work best as a space model of R13.2’. But first, we review some basic
results from surface topology. The genusg of a surface is the number of “tunnels” in that surface. This can be
computed by the Euler characteristic, which for a compact surface is defined byχ = 2−2g. The constantχ is
obtained by the relationχ =V −E+F, whereV is the number of vertices,E the number of edges andF the
number of faces of the surface. The Euler characteristic is aconstant that describes the shape of a topological
space independent of its geometric properties. It can be used, for example, as a necessary and sufficient
condition for two compact surfaces to be homeomorphic (a continuous deformation of one shape to another,
for example, a tea pot and a donut). For a low genus tubular surface, it is easy to determine its genus, by
counting the number of tunnels in the surface. For high genustubular surfaces, we use the following method
to find their genus. We partition each tube into two half tubes—so we have 2 edges and 2 faces—and each
junction into 2 vertices andα j edges, whereα j is the number of tubes meeting at the junctionj. Using the

Euler characteristic, we can derive the following relation: g = 1/2∑
Njunc

j=1 α j −Njunc+ 1, whereNjunc is the
number of junctions of the surface. This is equivalent to thefirst Betti number or the cyclomatic number,
g= E−V +1 by considering each tube as an edge and each junction as a vertex.

To generate high genus surfaces, a common technique is to usetubular structures obtained from the edge
graph of already existing maps. In general, the map does not need to be regular and we should not restrict
ourselves to tubular surfaces; artificial high genus surface can also be generated as in Figure 4 (c). van Wijk
suggested a selection criteria in order to map a given tilingon high genus surfaces, which we adopt here. This
can be summarized by two fundamental conditions: (i) eitherthe p-gons are centered at the junctions and
the number of tubes meeting at the junctions is a divisor ofp or (ii) some vertices of thep-gons are placed at
the junctions and the number of tubes meeting at the junctions dividesq. Even though these conditions are
too restrictive and even fail to solve many cases, they are natural steps to glue tiles on tubular surfaces. For
more details we refer to [8].

Let us now give several genus 13 surfaces and see which one of them agree with (i), (ii) and R13.2’. Our
first candidate is the most symmetrical genus 13 surface. It is obtained from a truncated cube called a
CubeOctahedronwhich inherits the full symmetry of the cube, see Figure 4 (a). We call it Tub(CubeOcta). Our
second candidate has less symmetry, obtained from a hosohedron{2,14} and has only one C13-axis, see Fig-
ure 4 (b). We call it Tub(Hoso-14). And our last candidate is amanually designed surface which also has a
C13-axis but with a different topology at the junctions, seeFigure 4 (c). We call itM13. All these surfaces
have genus 13 but with different junctions.

Condition (i) already fails for all three of them since Tub(CubeOcta) has ten junctions, Tube(Hoso-14)
has only two, andM13 has 14, none of which has the desired 12 (each junction shouldcontain two 12-gons
of R13.2’). Condition (ii) does not work either since 4 does not divide 3 (for the case of Tub(CubeOcta))
and 14 does not divide 3 (for the case of Tube(Hoso-14)).M13 has one junction consisting of 13 tubes and
13 junctions consisting of three tubes. They all divide three but the fact that it has different numbers of tubes
at the junctions makes it hard to imagine a natural process ofgluing the 12-gons on it. Hence, we exclude it
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from our search space.

(a) (b) (c) (d)
Figure 4 : Examples of genus 13 surfaces obtained from a: (a) CubeOctahedron, (b) hosohedron
{2,14}, (c) manual design and (d) R3.4’{6,4}.

What we are looking for is a tubular surface having exactly 12junctions and the number of incoming
tubes at each junction must be a divisor of 12. This is equivalent to finding a surface with 12 vertices and
some number of faces such that 2,3,4,6 or 12 of them share a vertex. This space is huge but by restricting
ourselves top-gon faces, we can find a regular map with these properties. R3.4’{6,4} is an example of
one: it has 12 vertices and eight hexagons such that four of them always share a vertex. A space model of
it is depicted in Figure 14 of [8]. This model is obtained froma hosohedron{2,4} but we will use a model
obtained from a tetrahedron (see Figure 4 (d)) as a target model. By tubifying the edge graph of this map, we
obtain the desired genus 13 surface, which we call Tub(R3.4’). Our case analysis is an alternative view of
van Wijk’s method of generating regular maps. As we can see from Figure 4, although the surface suggested
in (d) fulfill all the conditions, it lacks symmetry and elegance. This is where van Wijk’s method fails. In
our earlier work [11], instead of using a direct tubificationof the edge graph, we applied a spring relaxation
energy and let the tube deform accordingly. We will see in thenext paragraph that the tube frame of the
6-ring is a minimizer of Tub(R3.4’).

(a) (b) (c)
Figure 5 : (a) R5.3’{5,4} and its medial axis, (b) relaxation without constraints, (c) relaxation
with constraints.

Energy based modelling: The idea is to consider each vertex as a charge particle attracted by its neigh-
bors and repulsed by all other vertices. The total energy of this system is given by

E(G) =

∥

∥

∥

∥

∥

|v|

∑
i=1

∑
i 6= j

fr(xi ,x j)+
|v|

∑
i=1

∑
i↔ j

fa(x j ,xi)

∥

∥

∥

∥

∥

2

where,fa(x,x j ) =H‖x−x j‖(x−x j ) is the force of attraction exerted byx j onx and fr(x,x j) =K 1
‖x−xj‖2 (x j −

x) is the force of repulsion.H andK are constants defining the strength of the forces. This energy is used by
Scharein [12] for relaxing knots in KnotPlot, with a knot type preservation constraint. This energy is also used
in the smoothing of Seifert surfaces used by van Wijk and Cohen in [10]. For our purpose, this energy alone is
not enough to guarantee a non-self-intersecting surface. We need an extra topological constraint at the nodes
of the graph. Suppose thatx is a node vertex and link(x) = {x1, . . . ,xn} is the set of all vertices adjacent
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to x. Then, for a vertexxi ∈ link(v), we add a planarity constraint onxi such that for allx j ∈ link(v), with

j 6= i, x j exerts a force of magnitudeL(E
√

sin2(2π i/n)−cos2(2π i/n)−di j ) onxi , wheredi j is the euclidean
distance betweenxi andx j , L is a constant andE is the average edge length of the edge graph. There are
still some extra forces that we added to the system to have more control of the final shape, more details can
be found in [11]. In Figure 5, we took the regular map R5.3’{5,4} and showed that without the topological
constraints at the node, the resulting minimized shape has self-intersections. This modified spring energy
works well and improves the symmetry of the regular maps in most cases. The tubular shape of the 6-ring
is a minimizer ofE(G) applied to the edge graph of the model obtained in Figure 4 (d). The minimization
process is illustrated in Figure 6. Unfortunately, it is notunique. Luckily the system did not get stuck at a
local minimum. This happens often in our experimentation with other shapes. Inspired by the symmetry of
the 6-ring, we were convinced that a more precise geometrical approach would be more convenient. We are
going to use two Borromean rings to achieve that.

Figure 6 : Spring energy minimization applied to the medial axis of Tub(R3.4’) to obtain the
shape of the 6-ring.

Using two Borromean rings: A way to generate the Borromean rings is to start with an ellipse with the
following parametric equation:

(x(u),y(u),z(u)) = (cosu,0,2sinu) 0≤ u≤ 2π (1)

and perform successive 90 degree rotations around its canonical axis to obtain the other ellipses. This con-
struction is shown in Figure 7. We then take the final ring, duplicate it and rotate the duplicated links around
the z-axis as shown in Figure 7 (d). The resulting tubular surfacethat has the links as its medial axis, has
genusg = 21. To derive a genus 13 surface, we remove eight of the junctions by not letting the two Bor-

(a) (b) (c) (d)
Figure 7 : Construction of the Borromean rings from an ellipse and a genus21 surface obtained
from two Borromean rings.

romean rings intersect at some points; these intersectionsare marked with circles in Figure 7 (d). As a result,
we have only 12 junctions and we obtain our genus 13 surface. The idea is to start with a non-planar ellipse
which looks like afigure-8in thexy-plane. Such ellipses can be parametrized by

(x(u),y(u),z(u)) = (acosu,bsin(2u),csinu), 0≤ u≤ 2π, (2)
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wherea> 0,b∈ R andc> 0. a andc are the radii of the ellipse andb controls the flatness of thefigure-8
in thexy-plane. In our model, we chosea= 1,b=−1/5 andc= 2. We can see from Figure 8 (c) that there
are exactly 12 intersection points produced by the two Borromean rings. To obtain the final surface, we use
these Borromean rings as a medial axis and build a tube aroundit.

(a) (b) (c)
Figure 8 : The Borromean rings with non planar ellipses and the medial axis of the 6-ring.

Intuitive gluing of the 12-gons

In this section, we recall how to generate a non-compact representation of R13.2’ in hyperbolic space as illus-
trated in Figure 2 (d). It is not possible to tessellate the sphere with regular 12-gons, nor the Euclidean plane
since the angle at the vertices does not sum up to 2π. However, it is possible in the hyperbolic space. Bear-
don [1] is a good introductory book for hyperbolic geometry.The usual way of generating a{p,q} tiling
of hyperbolic space is presented in Dunham [4]. His article provides a comprehensive way (with pseudo
code) to generate hyperbolic tilings. The algorithm, unfortunately, only produces a universal covering (sev-
eral copies of the regular map), and finding one regular map insuch an infinite group is quite hard. A simple
method to generate regular maps is to use their symmetry group. It is usually denoted as a set〈G|R〉 of
generatorsG and relatorsR. The symmetry group of all the regular maps of genus less than302 have been
enumerated by Conder in [2] in the form of generators and relators. R13.2′ has the following symmetry
group,

Sym(R13.2′) =
〈

R,S,T |T2,S−3,(SR)2,(RT)2,RSR−2SR−1SR−2SR2,R12〉 .

Here,R,S are rotations andT is a reflection. For a geometric definition of these isometries, see for exam-
ple [11]. Sym(R13.2’) is a finite group and its element representatives can be enumerated using Advanced
Coset Enumerator (ACE) [6]. ACE gives the coset table of a given finitely generated group. Using ACE,
we found that Sym(R13.2’) has order 576. It can be realized asa triangular tiling group in the hyperbolic
space obtained by a fundamental triangle which has anglesπ/p,π/q andπ/2 (see Figure 9). This triangle
group can be partitioned into twenty-four 12-gons by takingthe quotient of the subgroupH1 = 〈R,T〉 in
Sym(R13.2′). According to Senechal [14], this induces a 24 symmetric colorings of the tiling group. We
can assign a unique color to every four of these twenty-four 12-gons, by taking the quotient of the subgroup
H2 =

〈

R,T,SR−3S
〉

in Sym(R13.2′), which induces a 6-coloring of the map. This coloring technique is called
left coset algorithmand is used to color hyperbolic patterns (see for example Penas [5]). A nice feature of
this method is the possibility to extend the color symmetry to the universal covering of the map. The sym-
metry group of the regular map not only gives us a way to generate the 12-gons but also provides us with
information on how these 12-gons should be glued together sothat the color permutation at each vertex is
preserved. We choose the 6-coloring of the map since it matches nicely with the symmetry of the 6-ring.

Gluing the 12-gons: Once the neigbhoring information of the 12-gons are obtained in the hyperbolic
space, we can start to glue them on to the tubular surface. We will only glue the four red tiles (see Figure 9
(c)) and generate the rest by applying rotations on these first four. Here a precise geometric construction of
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(a) (b) (c)
Figure 9 : (a) A fundamental triangle having angleπ/2,π/p andπ/q, (b) a twenty-four12-gons
partition of the triangular group and (b) the 6-coloring of R13.2’.

the target surface is needed since the rotations should map edges to edges and cover the whole surface. For
each 3D rotation, we identify the corresponding rotation inthe hyperbolic space. From here, the 12-gons
are considered to be an elastic fabric and are allowed to be stretched and twisted during the gluing pro-
cess. We place the center of the tiles at the junctions and thevertices are placed where two tubes meet at the
junctions. This process is summarized in Figure 10. To obtain the other 12-gons, we use the C4-axis of the
surface as in Figure 1 (b) to get the purple, grey and yellow 12-gons. This C4-axis is equivalent, in hyperbolic
space, to a clockwise rotation around the center of a green 12-gon (black dot in Figure 9 (c)) with an angle
2π/p. We use the C3-axis in Figure 1 (a) to get the green 12-gons, which is equivalent, in hyperbolic space,
to a clockwise rotation around the vertex where a red, yellowand green 12-gons meet (red dot in Figure 9
(c)) with an angle 2π/q. All the remaining symmetry axes of the 6-ring can be identified in the same fashion
as a rotation in the hyperbolic space. A combination of thesetwo rotations gives the blue 12-gons and finally
we obtain a model of R13.2’ with, first, the same color permutation in the hyperbolic space and second, the
same number of symmetry elements which is in this case twenty-four.

Figure 10 : Gluing of the four red12-gons on the surface forming a fundamental domain of the 6-ring.

Conclusion

We presented a mathematical construction of the 6-ring, a highly symmetric surface formed by twenty-four
12-gons. These 12-gons are glued together with a 6-coloringscheme according to the symmetry group of
R13.2′. The resulting faces of the map are not only topologically equivalent but by taking appropriate starting
12-gons, all the remaining 12-gons can be obtained by rotations around some specific axis. We modelled the
Borromean rings with explicit formulae to derive the genus 13 of the 6-ring. The harmony of the 6-ring
motivates us to further study and improve the symmetry of theexisting regular maps in the hope of finding
a more conceptual approach to tackle the general problem of visualizing them. There are embeddings of
regular maps which have allp-gons that are geometrically equivalent. Examples of them are shown in Figure
13 of [8]. The 6-ring has four 12-gons out of twenty-four as its fundamental domain which is already good
for a genus 13 regular map. We would like to know if this is the best one can do, in other words, having
three or two or even one fundamental 12-gons on the embedding. A nice exercise would be to classify all the
existing embeddings having all or almost allp-gons geometrically equivalent. It would also be interesting to
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explore other kind of knots and links to see what kind of genusg surface we will obtain from them.
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