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Abstract
An investigation of point symmetry patterns on the regular hexagonal tessellation is presented. This tessellation has
three point symmetry groups. However, the restriction to the hexagonal tessellation causes some symmetry subgroups
to be repeated in ways that are geometrically unique and others that are geometrically equivalent, resulting in a total
of 14 geometrically distinct symmetry groups. Each symmetry group requires a particular set of motif symmetries to
allow its construction. Examples of symmetric patterns are shown for several simple motif families.

Introduction

Throughout history, the symmetry found in regular polygons has been used to created interesting patterns.
These symmetries have been mathematically analyzed and give rise to an important class of groups, namely
the dihedral groups. The symmetry group of a regular polygon with n sides is given by the dihedral group of
order 2n, denoted Dn [2] and ∗n using orbifold notation [1]. This group contains elements that correspond
to rotations of the polygon and rotations following a reflection about a line through the center and one of the
vertices. The cyclic groups, Cn, which contain only rotations, are important subgroups of dihedral groups.

Uniform tessellations, where the number and order of regular polygons meeting at a vertex remains
constant throughout the tessellation, are a common decorative element for planar surfaces. The simplest
uniform tessellations are the tessellations by squares, regular hexagons, and regular triangles. Each uniform
tessellation of the plane by undecorated tiles has an underlying wallpaper or planar symmetry group. The
tessellation of the plane using regular hexagons has the ∗632 wallpaper symmetry group using orbifold
notation [1]. In this notation, the ∗ indicates the symmetry has points with dihedral symmetry. The numbers
following ∗ indicate the order of the symmetry, with 6 indicating a dihedral group of order twelve (D6),
3 indicating a dihedral group of order six (D3), and 2 indicating a dihedral group of order four (D2). The
centers of each of these point symmetry groups are located at unique locations with respect to the hexagons
as shown in Figure 2. The D6 group fixes a point at the center of the hexagon, the D3 group fixes a point at
a vertex, and the D2 group fixes a point located at the midpoint of the edge of a hexagon.

By decorating the tiles in a tessellation with simple motifs, one can create elaborate patterns in a modular
manner. For example, the author has previously described a technique for creating interlace patterns by
decorating the polygons in a regular tessellation using a simple motif using Bézier curves [3]. Each n-
gon is decorated by simple cubic Bézier curve connecting pairs of edge midpoints. The set of the possible
geometrically unique motifs (unique up to rotation) for decorating a hexagon with three arcs is shown in
Figure 1. Decorating tiles with such motifs can also alter the symmetry group of a tessellation. This work
presents the possible point symmetry groups possible for the regular hexagonal tessellation.

Methods and Results

Creating a point symmetric pattern from decorated regular hexagonal tiles depends on the symmetry groups
of the hexagonal tessellation and the available tile decorations. The subgroup structure of the three dihedral
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D3(D1V ) D2(D1E , D1V ) D2(D1E , D1V ) D1(D1V ) D6(D1E , D1V )

Figure 1 : The five possible geometrically unique motifs for decorating a hexagon with three
arcs. Each hexagon is decorated with three Bézier curves that connect the midpoints of edges.
The symmetry type of each motif is given and in parentheses are the bilateral (D1) symmetry
groups present for each motif. Here D1V indicates a mirror line passes through a vertex and D1E

indicates a mirror line passes through an edge midpoint. Note that with this motif family, there is
no motif having just D1E symmetry and there is no asymmetric (C1) motif. The lines outside each
hexagon indicate mirror lines and the dots represent a set of orbits for the indicated symmetry
group.

groups found in the hexagonal tessellation (D6, D3, and D2) give all possible symmetry groups. While
multiple subgroups of the same type are present, this does not result in a repeated symmetry pattern in all
cases. For example, the C3 subgroup of D6, denoted here as D6 :C3, fixes a point at the center of the hexagon
while the C3 subgroup of D3, denoted D3 :C3, fixes a point at a vertex, resulting in two distinct symmetry
patterns on the hexagonal tessellation. Likewise, the six D1 subgroups of D6 having bilateral symmetry fall
into two geometric classes: the groups that reflect about a line through the midpoints of edges (D1E ) and the
groups that reflect about a line through opposite vertices (D1V ). Of the 27 total subgroups (16 for D6, 6 for
D3, and 5 for D2), there are only 14 geometrically unique symmetry patterns for the hexagonal tessellation
as shown in Figure 2.

Some point symmetry patterns require individual hexagonal tiles having specific tile patterns. For ex-
ample, D6 : C3 requires a center tile with general C3 symmetry, while D3 : C3 has no such requirement.
Similarly, D6 :D6 requires a center tile with D6 symmetry, field tiles with both D1V symmetry and D1E

symmetry because there are mirror lines that bisect hexagons at edge midpoints and through opposite ver-
tices. In the subgroups of the D6 symmetry group, the motif of the center polygon must be selected to match
the subgroup symmetry. In outer polygons where the center lies along a mirror line, the polygon motif must
have D1 symmetry: D1V symmetry if the mirror line also passes through a vertex and D1E if the mirror line
passes through an edge midpoint. When selecting a motif, its symmetry type must be verified to match the
requirements of a particular location. Each motif must also be rotated to match the subgroup symmetry of
the tile location. For example, tiles surrounding the center tile in the D6 :D6 pattern require D1E symmetry
and must be oriented correctly with respect to the mirror lines.

Figure 3 shows two examples with C6 symmetry using related motif families. As with the previous
examples, these patterns were created by drawing motif patterns on a symmetric hexagonal grid. The selected
symmetry has a corresponding origin that is used to determine the set of equivalent hexagons from the
standpoint of the symmetry group. The motif patterns were then selected for one tile and mapped via the
symmetry operation to all other equivalent hexagons.

Discussion

The regular hexagonal tessellation has three parent point symmetry groups with a total of 27 subgroups.
However, the restriction to the hexagonal tessellation causes some symmetry subgroups to be repeated,
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∗632 D6 :C1 (3); none D6 :C2 (1); C2 D6 :C3 (1); C3

D6 :C6 (1); C6 D6 :D1a (7); D1V D6 :D1b (4); D1E D6 :D2 (3); D2, D1V , D1E

D6 :D3a (1); D3V , D1V D6 :D3b (1); D3E , D1E D6 :D6 (1); D6, D1V , D1E D3 :C3 (1); none

D3 :D3 (1); D1V D2 :C2 (1); none D2 :D2 (1); D1V , D1E

Figure 2 : Example patterns using the geometrically unique symmetry groups on the tessellation
by regular hexagons. In the ∗632 symmetry group, the center of each hexagon is the center point
of the dihedral group D6, each vertex is the center point of the dihedral group D3, and each edge
midpoint is the center point of the dihedral group D2. Mirror lines are shown along with the orbit
of an example point in the given symmetry group G :H , where G is the parent group (D6, D3, D2)
and H is the subgroup. The number of equivalent symmetries is shown in parentheses for each
point symmetry group. The unique tile motifs (see Figure 1) required for each symmetry group are
shown following the semicolon in each pattern name.
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3 arcs per edge 4 arcs per edge

Figure 3 : Example C6 patterns on the tessellation by regular hexagons. In these figures, the
motif’s Bézier arcs connect endpoints evenly spaced along the edges of hexagons. The motif
family for the figure on the left comprises arcs connecting three endpoints per hexagon edge (9
arcs per hexagon). The motif family for the figure on the right comprises arcs connecting four
endpoints per hexagon edge (12 arcs per hexagon).

resulting in only 14 geometrically unique point symmetric groups. Example point symmetric patterns for
each of these 14 point symmetry groups were given. Note that there are two geometrically unique forms
of D1 symmetry. While these patterns look similar, D6 : D1a requires tiles that have D1V symmetry and
D6 :D1b requires tiles that have D1E symmetry. Likewise, there are three geometrically unique forms of
D3 symmetry and two geometrically unique forms of D2 symmetry. Each of the point symmetry groups
requires a particular set of motif symmetries to allow its construction. Any motif pattern family having tiles
with appropriate symmetries can be used to create symmetry patterns. The bounded nature of symmetric
patterns created in this manner can have more visual appeal than conventional planar tessellations.
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