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Abstract
This paper introduces a notation for describing a regular polygon tile decorated with arcs. Given a tile decorated
with a number of arcs having endpoints uniformly spaced around the polygon, the number of possible decorated tiles
is given, including the special case where no arcs intersect. The tiles decorated in this manner provide an enormous
number of patterns.

1 Introduction

Tiles comprised of regular polygons (regular tiles) form the basis of many two-dimensional patterns, such
as the Archimedean and more generalk-uniform tilings. Tiles can also be decorated with a simple motif
to produce more intricate patterns. For example, Truchet [1] explored the patterns obtainable from a single
square tile that was bisected along a diagonal between opposite vertices. Browne [2] investigated patterns
on regular polygons using arcs connecting midpoints of polygon sides. Reimann [3] investigated motifs on
regular polygons where each side was subdivided into an equal number of segments and connected using
Bézier curves. Making the divisions equal in length allowsarcs from adjacent tiles in a tessellation to form
continuous segments.

This paper introduces a notation for describing a regular tile decorated with arcs as in [3]. An expression
for the number of tiles is developed for polygons withn sides andd divisions per side. In a minority of cases,
a decoration will consists of arcs that do not cross. A separate expression is given for computing the number
of patterns where there are no arc crossings.

2 Methods and Results

Given a regular polygon withn sides andd divisions per side. The productnd must be even to allow the
uniqueness condition on the endpoints so that each arc connects two distinct endpoints. Each vertex can be
assigned a unique integer 0,1, . . .n− 1 in a clockwise fashion starting at the top of the triangle. Likewise,
each endpoint can be assigned a unique integer 0,1, . . .nd−1 starting with the first side clockwise from the
first vertex. Figure 1 shows an example of this with a square (n = 4) that containsd = 1 divisions per side.

A specific decoration can be fully described using the following notation:

(α ,β |γ ,δ |ε ,ζ | · · ·)

whereα ,β ,γ , . . . represent the endpoint number. There are exactlym= nd/2 pairs of endpoints representing
a single arc separated using the ‘|’ character all enclosed by parentheses. For a triangle (n = 3) with two
endpoints per side (d = 2), the possibilities including rotationally equivalent decorations are shown along
with the corresponding decoration in Figure 2. Note there are 15 possible decorations for this configuration
with 10 containing crossings and 5 with no crossings.
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Figure 1: The collection of all 3 possible decorations of a square with1 division per side. The notation
for each decorated square is described in the text. Note there are two unique geometric tiles.

Since the arc endpoints lie along the perimeter of the polygon, these points and corresponding arcs can
be mapped onto a circle, resulting in a chord diagram associated with the decoration. Riordan [4] states the
number of distinct chord diagrams withmarcs is given by

f (m) =
(2m)!
2mm!

which is the Sloane sequence A001147 [5].
This result can be obtained using the following reasoning, which is the basis for generating all possible

decorations. For each pairλ ,µ representing an arc, list the points in increasing order so that λ < µ . Fur-
thermore, list thempairs so that the first components of all pairs are increasingin order. The first number of
the first pair must be 0, withnd−1 choices for the second number. In the second pair, the first number is the
smallest remaining value, leavingnd−3 choices for the second number. The values in last pairing are fixed
because of ordering. ForN = 2m= nd endpoints, this results in

f (N) = (N−1)(N−3)(N−5) · · · (1) =
N!

N(N−2)(N−4) · · · (2)
=

N!

(N/2)!2N/2
=

(2m)!
2mm!

.

The number of chord diagrams where there are no crossings is given by Errara [6] as

g(m) =
(2m)!

m!(m+1)!

which is just the Catalan numbers. Algorithmically, one canverify a decoration is crossing free by con-
sidering the relationship between endpoints of the arcs, namely pairs of endpoints should nest. A recursive
procedure can be used to construct a crossing free decoration using the fact that an arc will partition the set
of endpoints into two distinct subsets. If each subset contains an even number of points, the subset can then
be recursively split until the subset contains only two endpoints. Values for the functionsf andg are given
in Table 1. Similar logic can be used to see that all tiles decorated in this manner are all 2-colorable.

Note the number of tiles is the same for any combination ofm arcs. For example triangles with 4
divisions, squares with 3 divisions, hexagons with two divisions, and dodecagons with 1 division will have
the same number of tile possibilities becausem= 6 for each of these situations. However, the number of
geometrically unique tiles is different because the underlying symmetries are different as shown form= 3
in Figures 2 and 3 and form= 4 in Figures 4 and 5.

all possible tiles geometrically unique tiles
f (m) g(m) crossings crossings

n d m total 0 1 2 3 4 5 6 number 0 1 2 3 4 5 6
4 1 2 3 2 1 2 1 1
3 2 3 15 5 6 3 1 7 3 2 1 1
6 1 3 15 5 6 3 1 5 2 1 1 1
4 2 4 105 14 28 28 21 9 4 1 30 6 7 6 6 2 2 1
8 1 4 105 14 28 28 21 9 4 1 17 3 4 3 3 2 1 1

Table 1: Number of decorated tiles with m total arcs.
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Figure 2: The collection of all 15 decorations of a triangle with 2 divisions per side. The top row con-
tains all geometrically unique tiles arranged from left to right by increasing number of arc crossings.
Columns contain geometric equivalence classes. Note thereare 5 total decorations (3 unique) without
crossing arcs and 10 decorations containing crossings (4 unique).
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Figure 3: The collection of all 15 decorations of a hexagon with 1 division per side. The top row con-
tains all geometrically unique tiles arranged from left to right by increasing number of arc crossings.
Columns contain the 5 geometric equivalence classes. Compare with patterns in Figure 2.

3 Discussion

As seen in Table 1, the number of different decorated tiles increases exponentially with the number of
divisions and polygon sides. This provides an enormous number of patterns from the same family that can
be used to provide a statistically uniform, yet varying tessellated pattern. Givenm arcs, the total number of
tiles withk crossings remains constant, however the number of unique tiles increases asn decreases due to the
interplay between symmetries in the crossing patterns and the underlying polygons. While the large number
might be daunting to produce, the number of unique individual arcs is actually very limited, especially when
one considers reflection and rotation. The importance of identifying patterns where there are no crossings
is in creating patterns where regions between arcs are filledwith a color or other distinctive pattern. Future
work includes understanding which patterns form rotation and reflection classes.
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Figure 4: The collection of the 30 unique geometric decorations of a square with 2 divisions per side.
There are 105 total possible decorated tiles.
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Figure 5: The collection of the 17 unique geometric decorations of an octagon with 1 division per
side. There are 105 total possible decorated tiles. Comparewith patterns in Figure 4.
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