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Abstract

We present a new algorithm, using only simple geome warp imagery from an arbitrarily shaped rseuregion
to an arbitrarily shaped target region. Mathemdsicgpeaking, the algorithm outputs harmonic mapge(y point
is at the average position of its neighbors) usiegy boundary conditions to curb excessive non-umifstretching
and shearing in order to appear more conformal.alperithm has typical running times measured toeds. We
give some artistic examples to demonstrate howehaelts can be used in digital photography andraghegphical
work.

(c)

Figure 1: (a) A harmonic map with Dirichlet (fixed positiodmyundary conditions from [7]. (b) A
discrete conformal map, also from [{t) A harmonic map using our new boundary condgio

1. Introduction

Photo editing software has a lot of functionalifijtérs, plug-ins, actions, etc.) devoted to wagpend
distorting imagery for artistic effect. In the mathaticsharmonicmaps create warps that are smooth and
even without creases or bumpsnformalmaps are maps that create warps that do not stieoipress,

or skew the image. (Stretching by the same amauewery direction is allowed.) Let us review some
points about harmonic and conformal maps beforeribésg the contributions of this paper.

1.1 Harmonic Maps. Harmonic maps are functions that satisfy th@lace equationAf=0. In the case

of harmonic functions of the form(x,y) = z (i.e., f: R>~ R), what the equatioAf(x,})=0 means is that
(x,y,2 is a saddle point where the upward curvature is#éme as the downward curvature. However, to
warp an image from one 2D region to another, wefusetions of the formf(x,y) = (u,v), orf: R*~ R

In this casef is harmonic iff,(x,y) = u, andf,(x,y) =v are.

Scientists and engineers use harmonic functionmadel various phenomena. Usually there is
something known about the boundary conditions & tlomain (it is called a Dirichlet boundary
condition if the position is fixed). The problemtgsfind a harmonic function in the interigk.simple way
to discretely calculate harmonic functions is tdike a mesh that covers the domain, fix the postiof
the boundary, and then iteratively set each vettethe average position of its neighboféis algorithm
relies on the property that each point in a harméumction’s domain is the average of its neighbors
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We can use these harmonic maps to warp an imadesbgetting the boundaries of a mesh to the
perimeter of a target shape, solving for the haiméumction and then afterwards using the harmonic
solution to do a piecewise interpolation betweeadyilaterals. Figure 1(a) shows a harmonic mapping.
Here, the boundary is set such that the arc-ledigtince is the same as on the disc: the discublzer
sheet glued to a wire frame and then distortedtimdlob shape.

1.2 Conformal Maps. Conformal maps are maps that preserve anglesoatblével. For instance, if two
curves meet at, say, a 45° angle in the origiman ttheir images under a conformal mapping wilb als
meet at 45°. See Figure 1(b). FRFf - R® functions, conformal maps are harmonic. Qualitdiv
speaking, due to preserving angles, a conformal dwgs not induce any non-uniform squishing,
stretching or skewing. Small shapes still retaiirtBhapes. Although straight lines can becomeetyrv
they will intersect the region’s boundaries (andheather of course) at the same angles they ditlan
original. We can typically expect conformal mapsrduce some variations in scale and orientatian. B
often there are hardly any overt signs that an @magnipulation has taken place.

With a keen understanding of conformal mathemasiosje very fascinating art has been produced
(see Bulatov [1]). And certainly conformal art Heeen realized by artists with a more intuitive seok
the qualities of conformal mappings: de Smit anddie [3] describe the mathematics of M. C. Essher’
Print Gallery which was produced without explicit knowledge ohformal geometry.

Like harmonic functions, conformal geometry has astvand rich history with many useful
applications in many fields such as physics, ergging, and cartography. The Riemann mapping
theorem proved the existence of a conformal mappetgveen two arbitrary simply connected regions
(that are not the entire plane) and the Schwaris€ifiel formula is the standard tool for achieviingse
maps (see [4]). However, Schwarz-Christoffel magus lee difficult to implement involving sophisticedte
mathematics and numerical methods that are subtepdi thorny floating-point arithmetic problems. |
computer graphics, there has been a great deateht work on discrete conformal approximations tha
avoid these numerical issues. See [2], [7] an@if] the many references therein. A typical appboabf
these methods would take a triangular mesh in tlieeensions, and then determine a conformal
mapping to a 2D mesh in the plane, allowing a coigré tool to apply a texture map to a 3D modelr Ou
algorithm focuses on mapping an image directly specified 2D shape. One of the main benefitsst ha
over existing conformal methods is its ease of en@ntation.

1.3 Contributions. In this paper, we provide a way to generate harmmappings from a given region
to another region with a prescribed shape that axgpeonformal in many common situations (i.e., it
reduces the amount of shearing and stretching weay see in harmonic functions with fixed
boundaries). See Figure 1(c). The algorithm itselfa modified version of the harmonic function
algorithm mentioned in Section 1.1. However, we aisiifferent boundary condition: instead of fixitinge
boundary points, they are free to slide along thenpeter of the target shape, shifting in whichever
direction results in a more conformal edge.

With a simple iterative step, quick convergence] aesults that are pleasing enough for digital
photography and graphical applications, we hope tiia algorithm will be of use to programmers,
mathematicians, and artists who may have been quslyi too shy to take on some of the current
conformal techniques found in mathematics.

In Section 2 we explore some popular conformal malations to get a sense of the appeal of
conformal maps. We discuss the details of the dhguritself in Section 3. In Section 4 we show some
results as well as discuss some limitations of itieghod. Section 5 shows some artistic examplesyusi
some new mappings. Finally, Section 6 discusseg $otare direction this work might go.
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2. Existing Conformal Mappings

To appreciate the qualities of conformal mappinggigital photography, we compare some popular
conformal maps (Figure 2), with some non-conforamalnterparts (Figure 3).

Figure 2(a) shows an example of a class of confomma@s known as the Droste effect (see [3]). One
of the striking features about this effect is thatyour eye moves around the spiral, there is amse
between the apparently infinite copies of each elgnn the scene.

German et al. [5] discuss how conformal mappings/ @n important role when displaying full
panoramas ovisible spheresn a plane. Figure 2(b) showsitde planet a popular method of displaying
a visible sphere using a (conformal) stereograpto@ection. By tilting the visible sphere, the mdjion's
changes of scale are used as a compositionald@vhphasize the subject.

If we wanted to change something’s rotational sytmymeve accomplish this in polar coordinatés (
r) conformally by scaling by the desired factot, and then raising to thexth power. So for instance, if
we wanted to change the rotational symmetry ofavéliake from six to two, we would scaeby three
and then cube. Figure 2(c) shows twelve examples.

TR i

Figure2: (a) The Droste effect. (b) A conformal little plateken at the Palace of the Fine Arts in San
Francisco. (c) Conformally mapping a snowflake tdews of rotational symmetry 1 through 12.

Figure 3: Non-conformal attempts at the examples in Figure 2.
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3. TheAlgorithm

Our ultimate goal is to take an image of an arbjtshape and to warp it nicely to another targefpsh

See Figure 4(a). If we overlay a sufficiently fimesh onto the target image and have a corresponding
mesh in the original, then we can map points froemdquadrilateral faces of one mesh to the other's b
using a convenient interpolation scheme of our sim@p The algorithm’s role is to output the pogismf

the original mesh’s vertices in the target region.

Figure4: (a) Given an image (of a euro) and a target sh@gogiare), map the image of t
square. (b) An inverse mapping that accomplishiss th

he euro to the

Typically when we render an image, we have thetionaf each pixel in the target and we want the
location (and color) of its corresponding pixel timee original. Therefore in practice, we are always
concerned with theaversemapping. So for example, when we want to map ttoelar euro to a square,
we need the inverse mapping of a square to a dhden in Figure 4(b).

The initial mesh that we simulate is a squaredatttorresponding to the shape of the original
imagery. Next, we associate the boundary pointshef mesh to the target shape’s perimeter. The
boundary points will be constrained to this perieneBy constraining a poinwve simply mean that if a
point is not already on its associated boundarmgn twve move its position to the closest point oft tha
boundary. The current implementation supports batind made up of arc and/or line segment
primitives. However, there is no reason why we dadt use other curves.

For any vertex, we associate a positignm an orientatiord, and a size&. Now imagine a plus-sign,

centered ap, with orientationd, and with arms
lengthr: we can impose a conformal conditio
by minimizing the distance between th
endpoints of the plus-sign arms, and the cen
position of the corresponding neighbor.

Our algorithm iteratively selects a rando
vertexv in the mesh and tweaks its parametg
(p, 6, r) until the mapping has converged. T}
pseudocode is listed in Table 1.

To tweak aninterior point, (i.e., the
randomly chosen vertexv has all four
neighbors) p is simply set to the average of it
neighbors. We calculateandr in case they are
needed later, but they do not impaatlirectly:

0 is calculated such that the plus-sign armi vis constrained then moy#to its boundary’s closest pt

approximate the direction t6s neighbors and

given vertexv = {p, 6, r}, andVv's neighborsN, E, SW
Np’ — (0,0),6' — 0,1 <0
&f both N andS exist, then:
terp(<—p'+Np+$)
0" — 0"+ 2 x (dir. of Ny - ) -n/2) /B is /2 fromN-S
rer+N-pl+5-pl
Telse ifN exists but noSthen: f/is on boundary
tIS p’ «— p' + the endpoint of south arm if
'€ o'« 0" + direction of N, - p) -n/2 /P is -n/2 fromN
P—r+N-pl
else ifSexists but nol then: f'is on boundary
p’ < p’' + the endpoint of north arm &f
0’ — 6’ + direction of §,- p) +n/2 /P is7/2 fromS
F—r+g-p
do the above if statement analogouslyEandwW
dividep/, 6’, andr’ all by the number of neighbors wf

p/is in interior

S

v—{p,0,r}

is set to the average distancevts neighbors.
See Figure 5.

Table 1: Pseudocode to tweak a vertex v
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If v is missing a neighbor, then we consider it onltbendaryof the target shape. To impose the
conformal boundary condition, we use the endpofrthe plus-sign arm of the neighbor opposite the
missing neighbor. Aftey's parameters are tweakedis constrained by moving to the nearest point on
the target shape’s perimeter. See Figure 6.

(a). - iy (b). O] . (c). - iy (d). :
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Figure5: One step of our algorithm (a) choose a random wevi¢b) Position p is set to the average
position of v's neighbors (circled). (c) The basbfientationd is determined. (d) Finally, th&ize rof the
plus-sign arms is set to the average distancesmeighbors.
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Figure6: (a2) A boundary condition. v is missing its northemighbor. (b) The north endpoint of the
southern neighbor (circled) is included to calcelgt (arrow). ()9 and r are calculated as before,
omitting the missing neighbor. (d) v is moved ®rikarest position on the edge

To decide when to halt the process, we define taicref conformalityC as the sum of the distances
from each plus-sign arm’s endpoint to its corresjimy neighbor’s position (normalizing these disesic
by dividing by the arm’s size). A simple test fanwergence stops the program when the change in
after 10,000 iterations is less than a threshold ¢ose 1.0). Run times are typically less than ten
seconds for a 32x32 mesh and less than a minuge68dx64 mesh. Once the iterations have stopped, th
mesh can be output, and the final step to map irgdigem the one mesh to the other completes thHe tas

4. Reaults

With this tool at our disposal, we can start cregatmaps between shapes. The meshes for the original
imagery can approximate almost any shape we ch@ss, taking in a bitmap mask to select which
mesh points to keep. Figure 7 shows four examples.

For differentdestinationshapes, our final meshes are mapped to regionsdbduby line segments
and arcs. Figure 7 shows the circle and the sgamrerget shapes and Figure 8 explores some other
possibilities. Note that the resulting harmonic smape not always perfectly conformal: we see th#t w
some shapes such as Figures 8(a) and 8(c) we eattes&ledly non-square rectangles in the resulting
meshes.

The heart in Figure 8(c) was created ugpregewise constraintd hat is, the boundary points on two
of the sides were constrained to the top bumpsnabdllowed to slide along down the sides. Theatffe
of these artificial piecewise constraints can lgmi§icant! Figure 9 shows five parallelograms mappe
a square checkerboard test pattern. Figures 9¢hjlgrare harmonic functions using different Diteth
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conditions. Figures 9(c) and (d) show our approasihg piecewise constraints. Figure 9(e) shows our

method with no piecewise constraints. That is, ey points are free to slip around the target stsap
corner.
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Figure 7: Mapping (a) a rough outline of Portugal to a cieclb) a heart to square, (c) a maple leaf to
a circle and (d) an x to a circle. In practice, iyal meshes have a higher resolution.
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Figure9: (a) A harmonic map with a simple fixed boundary émdwith a fixed boundary such that the
boundary lengths are equal to the original. (c) Ressof our mapping with all four corners fixed) (@ith
just the obtuse corners fixed, (e) and where thantary points are free to slip over any corner.

5. Artwork

The original motivation to undertake this projecismo put an entire visible sphere panorama onto a
tangram set where the edge of each tan (piece)hemtanother edge smoothly and continuously. To
encourage continuous rearrangement, the tans &er neant to be arranged into the familiar square
tangram configuration with their edges matchinge Thuyou projection, which maps a sphere onto a
tileable 1x2 rectangle, fits the bill. We approximahe Guyou projection by first mapping each
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hemisphere to a circle via a stereographic prajaciind then mapping that to a square using theesqua
to-circle mapping from Figure 4(b). Next, abuttitge two hemispheres-as-squares gives us an
approximation of a Guyou projection from which we the tans. See Figure 10.

M
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Figure 10: Panorama Tangram -orama Figure 11: Canadian Flag Projection

For fun, if we were to remove one of the squareibpheres from the tangram example and use the
maple-leaf-to-circle mapping from Figure 7(c) irstewe would have a world projection, interrupted i
three pieces, in the shape of the Canadian flagiseeigure 11.

Von Gagern and Richter-Gebert [9] map patterns frioenplane to hyperbolic space by conformally
mapping a pattern’s fundamental region to its egjeivt on the Poincaré disk. We have created orte suc
mapping in Figure 8(b). In the same vein, let uskawith a p6m wallpaper pattern recreated from the
well known one in Owen Jone&rammar of Ornameri6]. Figure 12 demonstrates how to convert this
pém pattern to a p4m one by generating a map beatwee right angle triangles. A simple affine
transformation is included for comparison.
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Figure 12: Changing wallpaper groups from pé6m to p4m. (a) dtiginal pém tiling with the 30-60-90
prototile. (b) Using our method to map the origipabtotile to a 45-45-90 triangle. (c) A prototile
created from a simple (affine) scaling: this presey area, but has discontinuities (sharp corneas th

were not in the original) along the prototile’s dianal.

We finish with one final example showing the résoif mapping the well known Sierpinski Triangle
and Sierpinski Carpet into each other’s shapesF&gee 13.
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Figure 13: The Sierpinski Triangle as a Square and the SisipiCarpet as a Triangle.
6. FutureWork

This algorithm is well suited for speed improvensemeshes larger than 100x100 often took more than
five minutes. We drastically improved the runtinfes higher resolution meshes by using a multi-grid
scheme: we run the algorithm at lower resoluti@anddtermine the global behavior, and then incrédase
resolution in stages to refine the answer untildesired resolution is achieved.

As mentioned in Section 4, there are limits to whsbapes our algorithm does well on and it would
be beneficial to understand what they are and \Weyhaps a new parameter tweaking step thatdjses
andr can be found that enforces conformality in theriiotr; so far, current attempts do not convergg ver
well.
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