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Abstract 
 

We present a new algorithm, using only simple geometry, to warp imagery from an arbitrarily shaped source region 
to an arbitrarily shaped target region. Mathematically speaking, the algorithm outputs harmonic maps (every point 
is at the average position of its neighbors) using new boundary conditions to curb excessive non-uniform stretching 
and shearing in order to appear more conformal. The algorithm has typical running times measured in seconds. We 
give some artistic examples to demonstrate how the results can be used in digital photography and other graphical 
work. 

 
 

 
1. Introduction 

 
Photo editing software has a lot of functionality (filters, plug-ins, actions, etc.) devoted to warping and 
distorting imagery for artistic effect. In the mathematics, harmonic maps create warps that are smooth and 
even without creases or bumps, conformal maps are maps that create warps that do not stretch, compress, 
or skew the image. (Stretching by the same amount in every direction is allowed.) Let us review some 
points about harmonic and conformal maps before describing the contributions of this paper. 
 
1.1 Harmonic Maps. Harmonic maps are functions that satisfy the Laplace equation: ∆ƒ=0. In the case 
of harmonic functions of the form, f(x,y) = z (i.e.,  f: ℝ2 

→ ℝ), what the equation ∆ƒ(x,y)=0 means is that 
(x,y,z) is a saddle point where the upward curvature is the same as the downward curvature.  However, to 
warp an image from one 2D region to another, we use functions of the form, f(x,y) = (u,v), or f: ℝ2 

→ ℝ2. 
In this case, f is harmonic if fu(x,y) = u, and fv(x,y) = v are. 
 

Scientists and engineers use harmonic functions to model various phenomena. Usually there is 
something known about the boundary conditions of the domain (it is called a Dirichlet boundary 
condition if the position is fixed). The problem is to find a harmonic function in the interior. A simple way 
to discretely calculate harmonic functions is to define a mesh that covers the domain, fix the positions of 
the boundary, and then iteratively set each vertex to the average position of its neighbors. This algorithm 
relies on the property that each point in a harmonic function’s domain is the average of its neighbors. 

                    
Figure 1: (a) A harmonic map with Dirichlet (fixed position) boundary conditions from [7]. (b) A 
discrete conformal map, also from [7]. (c) A harmonic map using our new boundary conditions. 

(b) (a) (c) 
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We can use these harmonic maps to warp an image by first setting the boundaries of a mesh to the 

perimeter of a target shape, solving for the harmonic function and then afterwards using the harmonic 
solution to do a piecewise interpolation between quadrilaterals. Figure 1(a) shows a harmonic mapping. 
Here, the boundary is set such that the arc-length distance is the same as on the disc: the disc is a rubber 
sheet glued to a wire frame and then distorted into the blob shape. 
 
1.2 Conformal Maps. Conformal maps are maps that preserve angles at a local level. For instance, if two 
curves meet at, say, a 45° angle in the original, then their images under a conformal mapping will also 
meet at 45°. See Figure 1(b).  For ℝ

2 
→ ℝ2 functions, conformal maps are harmonic. Qualitatively 

speaking, due to preserving angles, a conformal map does not induce any non-uniform squishing, 
stretching or skewing. Small shapes still retain their shapes. Although straight lines can become curved, 
they will intersect the region’s boundaries (and each other of course) at the same angles they did in the 
original. We can typically expect conformal maps to induce some variations in scale and orientation. But 
often there are hardly any overt signs that an image manipulation has taken place.  
 

With a keen understanding of conformal mathematics, some very fascinating art has been produced 
(see Bulatov [1]). And certainly conformal art has been realized by artists with a more intuitive sense of 
the qualities of conformal mappings: de Smit and Lenstra [3] describe the mathematics of M. C. Escher's 
Print Gallery which was produced without explicit knowledge of conformal geometry.  
 

Like harmonic functions, conformal geometry has a vast and rich history with many useful 
applications in many fields such as physics, engineering, and cartography. The Riemann mapping 
theorem proved the existence of a conformal mapping between two arbitrary simply connected regions 
(that are not the entire plane) and the Schwarz-Christoffel formula is the standard tool for achieving these 
maps (see [4]). However, Schwarz-Christoffel maps can be difficult to implement involving sophisticated 
mathematics and numerical methods that are susceptible to thorny floating-point arithmetic problems. In 
computer graphics, there has been a great deal of recent work on discrete conformal approximations that 
avoid these numerical issues. See [2], [7] and [8] and the many references therein. A typical application of 
these methods would take a triangular mesh in three dimensions, and then determine a conformal 
mapping to a 2D mesh in the plane, allowing a convenient tool to apply a texture map to a 3D model. Our 
algorithm focuses on mapping an image directly to a specified 2D shape. One of the main benefits it has 
over existing conformal methods is its ease of implementation. 
 
1.3 Contributions. In this paper, we provide a way to generate harmonic mappings from a given region 
to another region with a prescribed shape that appears conformal in many common situations (i.e., it 
reduces the amount of shearing and stretching we typically see in harmonic functions with fixed 
boundaries). See Figure 1(c). The algorithm itself is a modified version of the harmonic function 
algorithm mentioned in Section 1.1. However, we use a different boundary condition: instead of fixing the 
boundary points, they are free to slide along the perimeter of the target shape, shifting in whichever 
direction results in a more conformal edge. 

 
With a simple iterative step, quick convergence, and results that are pleasing enough for digital 

photography and graphical applications, we hope that this algorithm will be of use to programmers, 
mathematicians, and artists who may have been previously too shy to take on some of the current 
conformal techniques found in mathematics. 
 

In Section 2 we explore some popular conformal manipulations to get a sense of the appeal of 
conformal maps. We discuss the details of the algorithm itself in Section 3. In Section 4 we show some 
results as well as discuss some limitations of this method. Section 5 shows some artistic examples using 
some new mappings. Finally, Section 6 discusses some future direction this work might go. 
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2. Existing Conformal Mappings 

 
To appreciate the qualities of conformal mappings in digital photography, we compare some popular 
conformal maps (Figure 2), with some non-conformal counterparts (Figure 3). 
 

Figure 2(a) shows an example of a class of conformal maps known as the Droste effect (see [3]). One 
of the striking features about this effect is that as your eye moves around the spiral, there is no seam 
between the apparently infinite copies of each element in the scene. 
 

Germán et al. [5] discuss how conformal mappings play an important role when displaying full 
panoramas or visible spheres on a plane. Figure 2(b) shows a little planet: a popular method of displaying 
a visible sphere using a (conformal) stereographic projection. By tilting the visible sphere, the projection's 
changes of scale are used as a compositional tool to emphasize the subject. 

 
If we wanted to change something’s rotational symmetry, we accomplish this in polar coordinates (θ, 

r) conformally by scaling θ by the desired factor x, and then raising r to the xth power. So for instance, if 
we wanted to change the rotational symmetry of a snowflake from six to two, we would scale θ by three 
and then cube r. Figure 2(c) shows twelve examples. 
 

     

        
Figure 2: (a) The Droste effect. (b) A conformal little planet taken at the Palace of the Fine Arts in San 

Francisco. (c) Conformally mapping a snowflake to orders of rotational symmetry 1 through 12. 
 

   
Figure 3: Non-conformal attempts at the examples in Figure 2. 

 

(a) 

(b) 

(c) 
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3. The Algorithm 
 
Our ultimate goal is to take an image of an arbitrary shape and to warp it nicely to another target shape. 
See Figure 4(a). If we overlay a sufficiently fine mesh onto the target image and have a corresponding 
mesh in the original, then we can map points from the quadrilateral faces of one mesh to the other’s by 
using a convenient interpolation scheme of our choosing. The algorithm’s role is to output the positions of 
the original mesh’s vertices in the target region. 

 
Typically when we render an image, we have the location of each pixel in the target and we want the 

location (and color) of its corresponding pixel in the original. Therefore in practice, we are always 
concerned with the inverse mapping. So for example, when we want to map the circular euro to a square, 
we need the inverse mapping of a square to a circle shown in Figure 4(b). 

 
The initial mesh that we simulate is a square lattice corresponding to the shape of the original 

imagery. Next, we associate the boundary points of the mesh to the target shape’s perimeter. The 
boundary points will be constrained to this perimeter. By constraining a point we simply mean that if a 
point is not already on its associated boundary, then we move its position to the closest point of that 
boundary. The current implementation supports boundaries made up of arc and/or line segment 
primitives. However, there is no reason why we could not use other curves. 

 
 For any vertex v, we associate a position p, an orientation θ, and a size r. Now imagine a plus-sign, 

centered at p, with orientation θ, and with arms 
length r: we can impose a conformal condition 
by minimizing the distance between the 
endpoints of the plus-sign arms, and the center 
position of the corresponding neighbor. 

 
Our algorithm iteratively selects a random 

vertex v in the mesh and tweaks its parameters 
(p, θ, r) until the mapping has converged. The 
pseudocode is listed in Table 1. 

 
To tweak an interior point, (i.e., the 

randomly chosen vertex v has all four 
neighbors), p is simply set to the average of its 
neighbors. We calculate θ and r in case they are 
needed later, but they do not impact p directly: 
θ is calculated such that the plus-sign arms 
approximate the direction to v’s neighbors and r 
is set to the average distance to v’s neighbors. 
See Figure 5. 

                                                   

 

 
Figure 4: (a) Given an image (of a euro) and a target shape (square), map the image of the euro to the 

square. (b) An inverse mapping that accomplishes this. 

given vertex v = {p, θ, r}, and v’s neighbors N, E, S, W 
p′ ← (0,0), θ′ ← 0, r′ ← 0 
if both N and S exist, then:                    //p is in interior 
    p′ ← p′ + Np + Sp  
    θ′ ← θ′ + 2 × (dir. of (Np - Sp) - π/2)  //θ is -π/2 from N-S 
    r' ← r ' + |Np - p| + |Sp - p|  
else if N exists but not S then:               //p is on boundary 
    p′ ← p′ + the endpoint of south arm of N 
    θ′ ← θ′ + direction of (Np - p) - π/2    //θ is -π/2 from N 
    r' ← r' + |Np - p| 
else if S exists but not N then:               //p is on boundary 
    p′ ← p′ + the endpoint of north arm of S 
    θ′ ← θ′ + direction of (Sp - p) + π/2    //θ is π/2 from S 
    r' ← r' + |Sp - p| 
do the above if statement analogously for E and W 
divide p′, θ′, and r′ all by the number of neighbors of v 
if  v is constrained then move p′ to its boundary’s closest pt. 
v ← {p′, θ′, r′} 

Table 1: Pseudocode to tweak a vertex v 

(b) 

+   =
   

 
(a) 
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If v is missing a neighbor, then we consider it on the boundary of the target shape. To impose the 
conformal boundary condition, we use the endpoint of the plus-sign arm of the neighbor opposite the 
missing neighbor. After v’s parameters are tweaked, v is constrained by moving p to the nearest point on 
the target shape’s perimeter. See Figure 6. 

 

 
 To decide when to halt the process, we define a metric of conformality C as the sum of the distances 
from each plus-sign arm’s endpoint to its corresponding neighbor’s position (normalizing these distances 
by dividing by the arm’s size). A simple test for convergence stops the program when the change in C 
after 10,000 iterations is less than a threshold (we chose 1.0). Run times are typically less than ten 
seconds for a 32x32 mesh and less than a minute for a 64x64 mesh. Once the iterations have stopped, the 
mesh can be output, and the final step to map imagery from the one mesh to the other completes the task. 
 

4. Results 
 
With this tool at our disposal, we can start creating maps between shapes. The meshes for the original 
imagery can approximate almost any shape we choose, even taking in a bitmap mask to select which 
mesh points to keep. Figure 7 shows four examples. 
 

For different destination shapes, our final meshes are mapped to regions bounded by line segments 
and arcs. Figure 7 shows the circle and the square as target shapes and Figure 8 explores some other 
possibilities. Note that the resulting harmonic maps are not always perfectly conformal: we see that with 
some shapes such as Figures 8(a) and 8(c) we can see decidedly non-square rectangles in the resulting 
meshes. 

 
The heart in Figure 8(c) was created using piecewise constraints. That is, the boundary points on two 

of the sides were constrained to the top bumps and not allowed to slide along down the sides. The effect 
of these artificial piecewise constraints can be significant! Figure 9 shows five parallelograms mapped to 
a square checkerboard test pattern. Figures 9(a) and (b) are harmonic functions using different Dirichlet 

    
Figure 5: One step of our algorithm (a) choose a random vertex v. (b) Position p is set to the average 

position of v’s neighbors (circled). (c) The best-fit orientation θ is determined. (d) Finally, the size r of the 
plus-sign arms is set to the average distance to v’s neighbors. 

    
Figure 6: (a) A boundary condition. v is missing its northern neighbor. (b) The north endpoint of the 
southern neighbor (circled) is included to calculate p (arrow). (c) θ and r are calculated as before, 

omitting the missing neighbor. (d) v is moved to the nearest position on the edge 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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conditions. Figures 9(c) and (d) show our approach using piecewise constraints. Figure 9(e) shows our 
method with no piecewise constraints. That is, boundary points are free to slip around the target shape’s 
corner. 
 

  

  
Figure 7: Mapping (a) a rough outline of Portugal to a circle, (b) a heart to square, (c) a maple leaf to 

a circle and (d) an x to a circle. In practice, typical meshes have a higher resolution. 
 

 

 

   
Figure 8: Mapping a square to (a) an oval (b) a hyperbolic fundamental region as in [9] (c) a heart. 

 

 
Figure 9: (a) A harmonic map with a simple fixed boundary and (b) with a fixed boundary such that the 

boundary lengths are equal to the original. (c) Results of our mapping with all four corners fixed, (d) with 
just the obtuse corners fixed, (e) and where the boundary points are free to slip over any corner. 

 
5. Artwork 

 
The original motivation to undertake this project was to put an entire visible sphere panorama onto a 
tangram set where the edge of each tan (piece) matches another edge smoothly and continuously. To 
encourage continuous rearrangement, the tans are never meant to be arranged into the familiar square 
tangram configuration with their edges matching. The Guyou projection, which maps a sphere onto a 
tileable 1x2 rectangle, fits the bill. We approximate the Guyou projection by first mapping each 

(a) (b) 

(c) (d) 

(c) (b) (a) 

→ 

        (a)                          (b)                          (c)                           (d)                          (e)  
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hemisphere to a circle via a stereographic projection and then mapping that to a square using the square-
to-circle mapping from Figure 4(b). Next, abutting the two hemispheres-as-squares gives us an 
approximation of a Guyou projection from which we cut the tans. See Figure 10. 

For fun, if we were to remove one of the square hemispheres from the tangram example and use the 
maple-leaf-to-circle mapping from Figure 7(c) instead, we would have a world projection, interrupted in 
three pieces, in the shape of the Canadian flag seen in Figure 11. 
 

Von Gagern and Richter-Gebert [9] map patterns from the plane to hyperbolic space by conformally 
mapping a pattern’s fundamental region to its equivalent on the Poincaré disk. We have created one such 
mapping in Figure 8(b). In the same vein, let us work with a p6m wallpaper pattern recreated from the 
well known one in Owen Jones’ Grammar of Ornament [6]. Figure 12 demonstrates how to convert this 
p6m pattern to a p4m one by generating a map between two right angle triangles. A simple affine 
transformation is included for comparison. 

 
 We finish with one final example showing the results of mapping the well known Sierpinski Triangle 
and Sierpinski Carpet into each other’s shapes. See Figure 13. 
 

  
Figure 10: Panorama Tangram -orama Figure 11: Canadian Flag Projection 

 
  

   
Figure 12: Changing wallpaper groups from p6m to p4m. (a) The original p6m tiling with the 30-60-90 

prototile. (b) Using our method to map the original prototile to a 45-45-90 triangle. (c) A prototile 
created from a simple (affine) scaling: this preserves area, but has discontinuities (sharp corners that 

were not in the original) along the prototile’s diagonal. 

(a) (b) (c) 

� 
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6.  Future Work 
 
This algorithm is well suited for speed improvements. Meshes larger than 100x100 often took more than 
five minutes. We drastically improved the runtimes for higher resolution meshes by using a multi-grid 
scheme: we run the algorithm at lower resolutions to determine the global behavior, and then increase the 
resolution in stages to refine the answer until the desired resolution is achieved. 
 

As mentioned in Section 4, there are limits to which shapes our algorithm does well on and it would 
be beneficial to understand what they are and why. Perhaps a new parameter tweaking step that uses θ, 
and r can be found that enforces conformality in the interior; so far, current attempts do not converge very 
well. 

 
7. Acknowledgements 

 
The author would like to thank Christie Digital for supporting this research, photographer Pam Eveleigh 
for the use of her snowflake photograph in Figure 2(c) ©2010, and especially the reviewers for their 
useful feedback. 
 

References 
 

[1] Vladimir Bulatov. Conformal Models of the Hyperbolic Geometry. Presented at MAA-AMS Joint Mathematics 
Meeting, San Francisco 2010. http://bulatov.org/math/1001/. Accessed February 1, 2011. 

[2] Chuck Collins and Kenneth Stephenson. A Circle Packing Algorithm. Computational Geometry: Theory and 
Applications, vol. 25, pages 233–256, 2003. 

[3] Bart de Smit and Hendrik W. Lenstra Jr. The Mathematical Structure of Escher’s Print Gallery. In Notices of the 
AMS 50, no 4, pages 446–451, 2003. 

[4] Tobin A. Driscoll and Lloyd N. Trefethen. Schwarz-Christoffel Mapping. Cambridge Monographs on Applied 
and Computational Mathematics, 2002. 

[5] Daniel M. Germán, Lloyd Burchill, Alexandre Duret-Lutz, Sébastien Pérez-Duarte, Emmanuel Pérez-Duarte, 
Josh Sommers. Flattening the Viewable Sphere. Computational Aesthetics 2007, pages 23–28. 2007. 

[6] Owen Jones. The Grammar of Ornament. Folio edition, Bernard Quaritch, 1910.  
[7] Liliya Kharevych, Boris Springborn and Peter Schröder. Discrete Conformal Mappings via Circle Patterns. In 

ACM Transactions on Graphics 25(2), pages 412-438, 2006  
[8] Boris Springborn, P. Schröder, and Ulrich Pinkall. Conformal Equivalence of Triangle Meshes. In ACM 

Transactions on Graphics, 27(3), article 77, 2008. 
[9] Martin von Gagern and Jürgen Richter-Gebert. Hyperbolization of Euclidean Ornaments. The Electronic 

Journal of Combinatorics, 16(2), 2009. 

 
Figure 13: The Sierpinski Triangle as a Square and the Sierpinski Carpet as a Triangle. 
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