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Abstract

In his  1952 paper  “The Chemical Basis of Morphogenesis” Alan Turing suggested that a system of chemical  
substances, reacting together and diffusing through a tissue, would account for the generation of patterns in multi-
cellular organisms. In this paper a simplified computer model is derived from his idea, successively elaborated and  
used for the production of artworks reminiscent of electron microscope images of diatoms.

Simple Turing Patterns

Spots and stripes are a recurring motif in the animal world, for example the spots on whale sharks and the 
stripes on zebras. Is there a common fundamental process by which they form? In his 1952 paper “The  
Chemical Basis of Morphogenesis” Alan Turing mathematically demonstrated that a system of diffusing 
substances which produce and consume each other would naturally give rise to such patterns, see Turing 
[1]. The simplest case involves “activator” and “inhibitor” substances. The activator causes the production 
of  more  of  itself  as  well  as  of  the inhibitor,  and also  causes  pigmentation.  The inhibitor  causes  the 
destruction of the activator and of itself. The substances diffuse through the tissue, with the activator  
diffusing more slowly than the inhibitor and thus having a smaller range of effect before destruction. 
Spots  of  a  size  dependent  on  the  diffusion  rates  arise  spontaneously  in  this  model  from an  almost 
homogeneous initial state, and space themselves into regular arrays.

The first unambiguous experimental evidence of a Turing pattern in a physical system was reported  
in 1990 by Castets et al. [2] in a system of five chemicals in a gel reactor. The system was modeled by 
Lengyel and Epstein [3] who derived an equivalent two variable model and analysed its spatial behaviour.

Models derived from Turing's idea are widely used in computer graphics and known as “reaction-
diffusion systems”. The most seminal paper is Turk [4], who showed how to produce a non-square mesh 
conformal to the geometry of a model, and produce Turing patterns on it for texture and bump maps.

In this paper a simple model is derived from Turing's idea, then elaborated and applied in a series of  
mathematical artworks. In this model there is only one “substance”, which takes the role of pigmentation, 
activator  and  inhibitor.  It  is  represented  by  a  single  floating  point  number  for  every  element  of  a  
rectangular array. The elements of the array may be considered to be equivalent to the cells in the discrete  
model put forward by Turing in his paper. The floating point number representing the concentration of the 
substance becomes the pixel value in the resulting gray scale image. Diffusion is simulated by taking an  
average of the values of a certain area around each element, a smaller area for the activator and a larger  
area for the inhibitor. A simple rule is iteratively applied to all of the array elements for (usually) hundreds 
of time steps: If the average concentration in the smaller area is greater than the average concentration in 
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the larger area, increase the value by a small amount, otherwise decrease the value by a small amount. At  
each time step the resulting values are re-normalised to the somewhat arbitrary range -1.0 to 1.0, to avoid 
“run away”. Periodic boundary conditions are imposed to avoid edge effects.

Starting  from  an  initial  condition  of  pseudo-random  values  in  the  range  -1.0  to  1.0,  we  see 
characteristic Turing patterns emerging at time step 20, becoming more defined at time step 100 and well  
defined at time step 10000, see figures 1, 2 and 3 below. The system slowly relaxes over time to a more  
smooth and regular state. 

    Figure 1: Time step 20. Figure 2: Time step 100.   Figure 3: Time step 10000.

Compound Turing Patterns

The model described so far spontaneously produces stripe patterns somewhat reminiscent of those seen in 
the  natural  world.  Being  symmetric  in  its  behaviour towards  low and high  concentrations  it  doesn't 
produce fields of dots, which are asymmetric in terms of light and dark. It produces structure at only one  
scale, which is rare in natural processes. A straightforward elaboration is to add together multiple copies 
of  the  simple  model  (as  a  weighted  sum,  with  the  possibility  of  negative  weights),  operating 
simultaneously at different scales on the same data. The scale is given by the areas over which averages 
are  taken to determine the concentrations of  activator  and inhibitor.  Resulting patterns  are  shown in 
figures 4, 5 and 6 below.

                 Figure 4                               Figure 5                                  Figure 6

Here we see a locally broken symmetry that allows regions of light dots balanced by regions of dark  
dots,  within a  larger  stripe  structure.  Histograms of the  images show multiple  sharp  peaks,  possibly 
indicating stable sub-populations of cells where the various rules are “firing” in recurring short sequences.
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Lingfa  Yang  et  al.  [5]  provide  an  analysis  of  “interacting  Turing  modes”  (referred  to  here  as 
“compound Turing patterns”). They note that fish skins provide examples of Turing patterns of more than 
one wavelength or characteristic scale, and provide a set of partial differential equations describing two 
Turing patterns of different scale coupled together. Some of their simulations result in dots arranged in  
stripes, similar to figure 5 above. Turk [4] produced compound patterns in a different manner, by running 
a  large  scale  simulation,  “freezing”  parts  of  the  pattern  and then  decorating  it  with  a  smaller  scale  
simulation.

Multi-Scale Turing Patterns

A different way of combining Turing patterns of multiple scales (rather than simply adding them together) 
is to switch between Turing instabilities of different scales at different time steps. In figure 7 below, for 
each pixel and at each time step a decision about what scale Turing instability to deploy is made based on 
the amount of variation in the image around the pixel at that scale. The Turing instability of the scale with 
the least variation “wins” and “fires”, increasing slightly the variation at that scale. The resulting image  
has variation at multiple scales in a fractal-like manner, and strangely resembles an electron microscope 
image. Lighter areas appear raised, and darker areas recessed. The 3D shading effect is an accident of the 
purely 2D algorithm.

In figures 8 to 12 below a cyclic symmetry is imposed by averaging the concentrations of "activator" 
and “inhibitor” at each point with its counterpart points at 1/n, 2/n... (n-1)/n times 2 pi radians around the  
circle. There is an interesting juxtaposition of a strict symmetry and a complex organic looking surface. 
The images are somewhat reminiscent of electron microscope pictures of diatoms.

                Figure 7                                                Figure 8                                            Figure 9    

                Figure 10                                              Figure 11                                         Figure 12
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In figure 13 below compound Turing patterns are combined in the manner of multi-scale Turing 
patterns, giving a synthesis of the methods put forward in this paper. Figure 14 shows a mixture of 
symmetries, with 3-fold symmetry imposed on the small scale Turing instabilities and 9-fold symmetry on 
the large scale. We can see differing short scale details within larger repeating patterns. 

                              Figure 13                                                                            Figure 14

Future work will include an exploration of what sorts of symmetries can be imposed on the Turing 
instabilities and the application of an aesthetic selection genetic algorithm to the free parameters of this 
model, to explore the implicit space of potential forms. 
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