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Abstract

We propose notation for a class of paperfolded models that uses a simple formula-like string to completely describe
the folding process.

1 Introduction

In origami, or paperfolding, there are models that require complex fold steps. In order to describe the folding
process in written form, over time an intricate system of diagramming symbols and conventions has been
developed. Even so, there have been models that simply defy diagramming and whose authors (designers,
or composers) prefer to teach the folding process only in person, or not at all, and instead provide only the
crease patterthat shows the location (and sometimes sense) of all the folds actually present in the finished
model. Of course, a crease pattern alone may not uniquely define the model, but in typical cases it allows for
an educated guess at how, for example, the layers of paper should be arranged.

1.1 Pureland origami

So-calledpurelandorigami models restrict the folds used in each step to just the basimtainand valley

folds. In a valley fold, a straight line from one edge of the model to another divides the (normally flat) model
into two parts. The fold consists of a single crease along the straight line, and except for the rotation of one
of the two parts formed by the crease around the crease, nothing else moves. Pureland origami has been
popularized by John Smith through several booklets published by the British Origami Society. Due to the
simplicity of individual steps, it is particularly well suited to the teaching of beginners. Since the nature of

a simple mountain or valley fold is to rotate one part of the model around the fold crease by 180 degrees,
pureland models almost always remain flat.

1.2 Tessdlations

As the name suggests, paperfoldedsellationsare formed by repeating a single pattern, or a small set of
patterns, across the whole folded sheet. The folding of tessellations is usually considered to date back to the
work of Shuzo Fujimoto [3] and Yoshihide Momotani [7] in the 1960s and 1970s in Japan, although there
are known examples of folded tessellations as early as this in the West as well, notably that of Ron Resch.
Most folded tessellations require higly complex steps, since the different instances of the pattern to be folded
tend to interfere with each other and in fact, the easiest way to fold some tessellations is to carefully coax
the precreased or scored sheet into forming all the creases at once. In contrast to such more typical folded
tessellations, we study a class that can be folded by iteration of simple mountain and valley folds, that is, a
class ofpureland tessellations

A pleatis formed by a pair of adjacent parallel folds, one a mountain and the other a valley fold.

*This author’s work supported in part by NSF grant 0830791.
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(a) Atessellation fold by T. Kawasaki (b) Folding a pleat. Mountain fold (solid line) next to a ‘ellfold
(dashed line).

Figure 1. A tessellation that requires complex fold steps or a nashiigllapse to fold; simple pleat fold.

2 Pleat tessdllations

We consider pleat tessellation models formed by foldinggqueace of pleats along grid lines parallel to
the edges of the initial square, and possibly a few extrayalkr mountain folds (the lock). There is no
unfolding, so the model belongs to “pureland origami” andhieory lies flat. However, the photographs of
models shown in these pages illustrate the difference legtvilee theoretical model and the real life: paper
has finite positive thickness and the models shown are oblyimot flat. Theycanbe forced into lying flat

by careful application of force, but as soon as they are seldathey spring back into a three-dimensional
shape. This behavior is the result of a locking fold appliedsome) edges of the folded sheet. The lock
consists of two parallel mountain folds close to the edgd,kaeps the pleats folded tightly at the edge. The
shape itself is determined by the arrangement of pleatsn ##ei case of the hyperbolic paraboloid [2], the
three-dimensional shape is determined by the tension dbttied sheet, but in this case the thickness of the
paper and the elastic properties of its folds play a veryisagmt role. It is an interesting and apparently
difficult problem to predict the exact shape formed by a plesgellation model. While there has been some
work on computer simulations of the physical behavior ofiédl paper [1, 6, 4], none of it addresses the
forces acting between adjacent layers of paper. We arentlyrstudying a mathematical model that allows
us to take this issue into consideration. The notation ptegehere is the (easy) first step in building such a
simulation, since it allows a simple input specification &tkanslated into the folding process and an initial
state for the simulation to be computed.

Pleat tessellations appear to have been folded first by Baksdn, and a photograph of the basic form,
titled “Bulge”, appears in his Encyclopedia of Origami & Ragraft Techniques [5]. The basic form has
also been used by several origami designers to represerichids or snake skin. The more complex pleat
tessellations shown here have been folded by the first audtaoting in 2006.

3 Pleat tessdlation notation

Since all pleats are parallel to the edges of the originahsgjueach pleat is completely specified by four
pieces of information(a) direction(horizontal or vertical)(b) location(the coordinate of a point at which
the mountain fold of the pleat intersects an edge of the sju@j) sensgpositive or negative—the sign of
the difference between the location of the pleat’s mourdaith valley folds), andd) width.

Clearly, each pleat tessellation can be completely desgttily listing all the pleats to be folded in order.
Thus to explain how to fold a pleat tessellation, we need agrdims!
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(a) The basic crease pattern with pleat order spec{b) Bottom and left edges: pleat order for flat-bottom

fied. The mountain folds very close to bottom andbowl or pyramid (locking optional). Top and right

left edges are the optional locking folds edges: pleat order for simple bowl (with lock) or “four
peaks” (without lock).

Figure 2: Crease pattern for models in Figures 3(a)-3(d). Each pegitven a rank in each model. The
pleats should be folded in the order specified by these rdtiksts assigned equal rank can be folded in any
arbitrary order. Each number refers to two creases that tosimgle pleat. Figure 2(a) shows the pattern
for the basic form in Figure 3(a). The bottom and left edgeBigfire 2(b) show the sequence of pleats that
leads to the pyramid of 3(c), while the top and right edgesédfie models in Figures 3(b) and 3(d).

We describe two ways to notate a pleat tessellation. Theidirstry general, and could be generalized
to an arbitrary pureland model. There are several precedenthis, most notably the origami instruction
language OIL [8]. However, thanks to the restrictions weasgon the creases in pleat tessellations, our
task is simpler. In fact, in many cases the notation for asecg of creases can be compressed, resulting in
very short descriptions of some models that appear relatbaemplex. The second way of notating (typical)
pleat tessellations is even more compact, because in @uddi individual creases, it uses the fact that
typical pleat tessellations are formed by folding one oremagular sequences of pleats, in ways that create
symmetric patterns, and that there is only a small numbeifigreint ways these sequences are composed
and interleaved.

We first describe the general notation for a single pleat,thad, after giving some examples of pleat
tessellations defined by listing all their pleats, show seimple ways of compacting the description. Finally,
we describe the compact notation.

4 Singlepleat

Direction. Each pleat is by definition either horizontal or verticaldaso we use the letteds and v,
respectively, to denote the direction.

Location. Itis convenient to express distances and lengths in tertieafize (side length) of the original
square—that is, a horizontal fold formed by placing two apoedges of the square on top of each other
and pressing the sheet flat would be at distan@:ffiom the edge of the square. A pleat that uses this crease
as its mountain fold would then be at locatiof21 On the other hand, if pleats that we fold are all located
on a fixed grid, then writing down just the numerators of theiations creates significantly less clutter. In
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such a case, though, the numbers are meaningful only if we kme grid size. For example, if we start with
a 16x 16 grid, the same horizontal crease through the center waayd location 8, while in a 32 32 grid
its location would be 16. Which of the two units is being usealyrbe indicated, for example, by writing
u=1/16. However, since in the first case all the distances arghessl, and in the other all the distances
are at least 1, which unit is used can normally be inferredhftioe description.

To be consistent in this notation, we set up a coordinateesystith origin at the bottom left corner of
the square and direct tixeandy axes in the standard way, towards the right and up.

Sense. If we fold a horizontal valley fold, and then some distance\atit a horizontal mountain fold, we
get a positive pleat. If the mountain fold is below the vallile difference between the mountain and valley
locations is negative, and so the pleat is negative as well.

Width. Again, this is expressed either in terms of the original sgusize, or in terms of the grid unit
distance. In the notation, we will combine the informatidsoat the sense and the width of the pleat, by
writing the width of a negative pleat as a negative number.

Pleat notation. A pleat formed by a horizontal mountain fold through the egraind a valley fold 116

of the square width below it would be written €/ 7)h (the mountain fold is at distance 8 from the bottom
of the square, the pleat is horizontal, and the valley folgh@sitive) 1 units below the mountain fold). If the
pleat were negative (valley through the center, mountaimtebelow), we would write—(8/7)h. The simple
rule for decoding this notation is: the first number tellshes location of the top crease of the pleat, and the
letter the direction. If the pleat is positive, then the maimfold is above the valley, so the location of the
mountain fold is given by the first number. If the pleat is rtega then the first number gives the location of
the valley fold.

5 General pleat notation

Thebasicform. Let’s first consider the basic form of Figure 3(a) and takegpbiat of view from which
the model bulges upwards. Suppose each pleatli§ tvide and we begin folding from the lower left corner
and continue until we run out of paper. Every pleat we foldegative, because the coordinate of its mountain
fold is smaller than that of its valley fold. If we begin withharizontal pleat, and leave two units before it
(for the lock), the notation for this first pleat is(3/2)h. The second pleat will be vertical, and written as
—(3/2)v. The second horizontal pleat will begin two units above tre.fiThe first of these unit lengths is
hidden by the previous pleat, and the second is the port&iblgiin the final model. Thus the second pair
of pleats could be written as(6/5)h and—(6/5)v. Writing out the whole sequence is tedious, so we can
simplify the notation by introducing an index. The complitieling sequence for the model is the sequence
of pairs of the form
-3 -3

3-13-1"
wherei ranges from 1 to 5 (the largest meaningful coordinate for-ari6égrid is 16, and 15 is the largest
multiple of 3 smaller than this).

Simplebowl. In folding this model, we are effectively interleaving twolbes, one starting from the bot-
tom left and the other from the top right corner. For symmetry alternate between folding two horizontal
and two vertical pleats. Say we begin with a 32-unit grid. Titet horizontal pleat is, as before,(3/2)h.
Before folding the corresponding vertical pleat, howewear,fold another horizontal pleat at the very top of
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the sheet, that is, we fol(29/30)h. Note that this pleat is positive, because its mountain i®labove its
valley. Thus the bowl is completely described by
—3i 32-3i —3i v 32-3i v
3i—132-3i—-13i—-132-3i—-1"
for i ranging between 1 and 5.

Drawbacks. The simple bowl from the previous example has two mirrordingt “almost” has even more
symmetries; only the fact that each pair consisting of azonitial and a vertical pleat cannot be made at the
same time prevents this model from having the symmetry oluargq In a sense, it is globally symmetric,
but not locally.) However, this symmetry is not really refest well in the notation. The problem is that
we use the same coordinate system for each pleat. In ordéra@g much information as possible about
a model without need for complicated calculations, we migtgh our notation to somehow indicate the
inherent symmetries (as well as the “almost symmetriesicivignore the ordering of adjacent layers). In
the next section we describe such an approach to the notstaat tessellations.

6 Compact notation

In most pleat tessellations, each horizontal pleat is imately followed by a vertical pleat. In other words,
we consistently interlace horizontal and vertical pledisis leads to models that hold together even when
folded from paper that doesn’t hold creases too well. Thddray of each crease to unfold is kept in check
by its immediate neighbors, which at the same time createtetision that shapes the final fold without need
for wet folding. What this means for notation is that perheygd/e gone too far in trying to describe every
single crease: if we know the current pleat, the next onemesi completely determined. This observation
leads to the next, more restrictive but much more compacthamé visual notation.

Pleat sequences made implicit. The basic form consists of a single sequence of pleat paich, kor-
izontal pleat preceded and followed by vertical ones. If wevk how many pleat pairs we make, we know
exactly what the final result is. We ignore the distinctiommm®en a left-handed and a right-handed model
(determined by whether the first crease is horizontal orcadjt Thus we may as well describe the bulge by
just giving the number of pleat pairs to be folded.

Symmetry. To make the symmetry structure of a pleat tessellation ampawe specify the degree (the
number of symmetric pleat sequences folded), 1 (which mayniiéed) or 2. The goal is to give meaning
to expressions such as 16 (or equivalently, 16e basic bulge model) and4@he simple bowl).

Unit pleats. The width of paper used by a pleat of width 1 is actually 3 urtisscross the width of an
unfolded pleat, we first cross a unit in getting to the moumtald, then turn the corner around the mountain
fold and go back a unit width, and finally turn again, and goth@ounit to emerge from under the pleat. If
we are describing the model just in terms of pleats, and thewlhof the same width, it makes sense to use
the full width of the strip used up by a pleat as a unit of dise&anin other words, in the compact notation
writing 16 for a grid size will mean that we can fold 15 pleatsn the grid.

Example: bulge. This is the simplest case. If there &orizontal andk vertical pleats, we write jusk.

Example: simple bowl. If the sequence starting from the bottom left is seen as aeseguof positive
pleats, then so should be the sequence starting from thégtap This model consists of two basic pairs of
pleat sequences, and so we writé.15
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Example: pyramid. Here, the folding begins in the center and progresses t@thededges of the sheet.
These are negative pleats, and therefore we Write5)?.

Example: Two-fold basket. Here, two pleat sequences begin at the centers of two oppedifes of
the sheet. Compared to the basic bulge, one of these isd@atdegrees. We writle- i for a lengthk pleat
sequence rotated by/2 around an axis normal to the plane of the fold. (Note that ihcompatible with
the use of-1 for negative pleats.) Thus the two-fold basket may be dehby (15, —15).

Example: wave. Here, we are simultaneously folding a bulge from one and aidegdown (“flipped”)
bulge from the opposite corner. We denote the flip by therléttand so the wave is defined b¥5, 15f).

Paper size. We may also specify the paper size (in terms of full pleat ighits) before the rest of the
expression. Thus, a wave folded beginning with a3 grid could be written as 3215, 15f)2.

Example: fancy bowl. In this model the folding sequence for the upside-down pydaminterlaced
with the folding sequence for the bowl, resulting in an ingdrpyramid in the middle, and four corners
whose shape is exactly the simple bowl shape. We denotedhistly writing (7, —7f)?.

Example: second-order bowl. A second-order pleat consists of two opposite pleats nesath other.
We should group the pairs of simple pleats that form secoddrleats: 32 (7(1, —1f))?

More complicated sequences. The basic rule is: recurse and parenthesize. An expresside orm
(A1)(A2) instructs us to first fold the sequence specified\pythen the one byA,. The pleats o, will be
placed in between those 8. See Figure 4(d) for the interleaved bowl, defined by @?3(7)2.

7 Final comments

Suggestionsfor folding. The patterns given in this paper may be sufficient to alloneegnced folders

to reproduce the models. However, in order to make it eagiathers, we briefly describe the process. Most
of the pieces described in this paper are based on the squidrd ge easiest way to fold a grid is to use a
power of 2 as the number of squares along each side, and tgsativade an existing unfolded strip of paper
in two by aligning an edge of the paper sheet with a previofdlyed crease. Since many parallel folds
will stretch the sheet somewhat, it is best to alternate éetwdividing in half horizontally and vertically. In
order to maintain integrity of the paper sheet, it is besbtd bnly valley folds (or only mountain folds). Our
personal preference is to precrease only one half of eaely, phat is, only the mountain fold, and to create
the valley fold “on the fly” once the actual folding begins.€elmain reason for this is that the multiple layers
of paper will cause all but the first few pleats to lie slightway from their theoretical position. If both
the valley and the mountain fold are precreased, this “¢riegyals to problems. This approach to folding is
another factor that makes the compact notation naturahait focuses on individual pleats and assumes a
regular grid.

Finally, the lock is achieved by simply folding an edge of heet twice: two mountain folds in parallel
creating the impression of a rolled edge. If the pleats ale tightly as this is done (not easy, and best
attempted slowly and only a few pleats at a time), the twodelil prevent the pleats from opening up and
will thus lock the edge.

Acknowledgment. The authors thank the reviewers for a careful reading of tygep and numerous
corrections and suggestions for improving the presemtatio
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(@) Basic pleat tessellation,
Bulge) and unlocked. 15.

(c) Pyramid.(—15)2. (d) Simple bowl: unlocked(15)2.

(e) Wave.(15,15f).

(g) Candy dish(10,5f)2. (h) Two-fold basket(15i, —15i).

Figure 3: Some pleat tessellations.
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(a) Second order bowl. 377(1,—1f))2. (b) Valentine. 32 (15(1, —1f)).

(c) Double wave. 44(11,11f,11,11f). (d) Interleaved bowl. 32(8)%(7)2.

Figure 4: More advanced pleat tessellations.
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