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Abstract
We propose notation for a class of paperfolded models that uses a simple formula-like string to completely describe
the folding process.

1 Introduction

In origami, or paperfolding, there are models that require complex fold steps. In order to describe the folding
process in written form, over time an intricate system of diagramming symbols and conventions has been
developed. Even so, there have been models that simply defy diagramming and whose authors (designers,
or composers) prefer to teach the folding process only in person, or not at all, and instead provide only the
crease patternthat shows the location (and sometimes sense) of all the folds actually present in the finished
model. Of course, a crease pattern alone may not uniquely define the model, but in typical cases it allows for
an educated guess at how, for example, the layers of paper should be arranged.

1.1 Pureland origami

So-calledpurelandorigami models restrict the folds used in each step to just the basicmountainandvalley
folds. In a valley fold, a straight line from one edge of the model to another divides the (normally flat) model
into two parts. The fold consists of a single crease along the straight line, and except for the rotation of one
of the two parts formed by the crease around the crease, nothing else moves. Pureland origami has been
popularized by John Smith through several booklets published by the British Origami Society. Due to the
simplicity of individual steps, it is particularly well suited to the teaching of beginners. Since the nature of
a simple mountain or valley fold is to rotate one part of the model around the fold crease by 180 degrees,
pureland models almost always remain flat.

1.2 Tessellations

As the name suggests, paperfoldedtessellationsare formed by repeating a single pattern, or a small set of
patterns, across the whole folded sheet. The folding of tessellations is usually considered to date back to the
work of Shuzo Fujimoto [3] and Yoshihide Momotani [7] in the 1960s and 1970s in Japan, although there
are known examples of folded tessellations as early as this in the West as well, notably that of Ron Resch.
Most folded tessellations require higly complex steps, since the different instances of the pattern to be folded
tend to interfere with each other and in fact, the easiest way to fold some tessellations is to carefully coax
the precreased or scored sheet into forming all the creases at once. In contrast to such more typical folded
tessellations, we study a class that can be folded by iteration of simple mountain and valley folds, that is, a
class ofpureland tessellations.

A pleatis formed by a pair of adjacent parallel folds, one a mountain and the other a valley fold.
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(a) A tessellation fold by T. Kawasaki (b) Folding a pleat. Mountain fold (solid line) next to a valley fold
(dashed line).

Figure 1: A tessellation that requires complex fold steps or a nonrigid collapse to fold; simple pleat fold.

2 Pleat tessellations

We consider pleat tessellation models formed by folding a sequence of pleats along grid lines parallel to
the edges of the initial square, and possibly a few extra valley or mountain folds (the lock). There is no
unfolding, so the model belongs to “pureland origami” and intheory lies flat. However, the photographs of
models shown in these pages illustrate the difference between the theoretical model and the real life: paper
has finite positive thickness and the models shown are obviously not flat. Theycanbe forced into lying flat
by careful application of force, but as soon as they are released, they spring back into a three-dimensional
shape. This behavior is the result of a locking fold applied to (some) edges of the folded sheet. The lock
consists of two parallel mountain folds close to the edge, and keeps the pleats folded tightly at the edge. The
shape itself is determined by the arrangement of pleats. As in the case of the hyperbolic paraboloid [2], the
three-dimensional shape is determined by the tension of thefolded sheet, but in this case the thickness of the
paper and the elastic properties of its folds play a very significant role. It is an interesting and apparently
difficult problem to predict the exact shape formed by a pleattessellation model. While there has been some
work on computer simulations of the physical behavior of folded paper [1, 6, 4], none of it addresses the
forces acting between adjacent layers of paper. We are currently studying a mathematical model that allows
us to take this issue into consideration. The notation presented here is the (easy) first step in building such a
simulation, since it allows a simple input specification to be translated into the folding process and an initial
state for the simulation to be computed.

Pleat tessellations appear to have been folded first by Paul Jackson, and a photograph of the basic form,
titled “Bulge”, appears in his Encyclopedia of Origami & Papercraft Techniques [5]. The basic form has
also been used by several origami designers to represent fishscales or snake skin. The more complex pleat
tessellations shown here have been folded by the first author, starting in 2006.

3 Pleat tessellation notation

Since all pleats are parallel to the edges of the original square, each pleat is completely specified by four
pieces of information:(a) direction(horizontal or vertical),(b) location(the coordinate of a point at which
the mountain fold of the pleat intersects an edge of the square), (c) sense(positive or negative—the sign of
the difference between the location of the pleat’s mountainand valley folds), and(d) width.

Clearly, each pleat tessellation can be completely described by listing all the pleats to be folded in order.
Thus to explain how to fold a pleat tessellation, we need no diagrams!
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(a) The basic crease pattern with pleat order speci-
fied. The mountain folds very close to bottom and
left edges are the optional locking folds
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(b) Bottom and left edges: pleat order for flat-bottom
bowl or pyramid (locking optional). Top and right
edges: pleat order for simple bowl (with lock) or “four
peaks” (without lock).

Figure 2: Crease pattern for models in Figures 3(a)–3(d). Each pleatis given a rank in each model. The
pleats should be folded in the order specified by these ranks.Pleats assigned equal rank can be folded in any
arbitrary order. Each number refers to two creases that forma single pleat. Figure 2(a) shows the pattern
for the basic form in Figure 3(a). The bottom and left edges ofFigure 2(b) show the sequence of pleats that
leads to the pyramid of 3(c), while the top and right edges define the models in Figures 3(b) and 3(d).

We describe two ways to notate a pleat tessellation. The firstis very general, and could be generalized
to an arbitrary pureland model. There are several precedents for this, most notably the origami instruction
language OIL [8]. However, thanks to the restrictions we impose on the creases in pleat tessellations, our
task is simpler. In fact, in many cases the notation for a sequence of creases can be compressed, resulting in
very short descriptions of some models that appear relatively complex. The second way of notating (typical)
pleat tessellations is even more compact, because in addition to individual creases, it uses the fact that
typical pleat tessellations are formed by folding one or more regular sequences of pleats, in ways that create
symmetric patterns, and that there is only a small number of different ways these sequences are composed
and interleaved.

We first describe the general notation for a single pleat, andthen, after giving some examples of pleat
tessellations defined by listing all their pleats, show somesimple ways of compacting the description. Finally,
we describe the compact notation.

4 Single pleat

Direction. Each pleat is by definition either horizontal or vertical, and so we use the lettersh and v,
respectively, to denote the direction.

Location. It is convenient to express distances and lengths in terms ofthe size (side length) of the original
square—that is, a horizontal fold formed by placing two opposite edges of the square on top of each other
and pressing the sheet flat would be at distance 1/2 from the edge of the square. A pleat that uses this crease
as its mountain fold would then be at location 1/2. On the other hand, if pleats that we fold are all located
on a fixed grid, then writing down just the numerators of theirlocations creates significantly less clutter. In
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such a case, though, the numbers are meaningful only if we know the grid size. For example, if we start with
a 16×16 grid, the same horizontal crease through the center wouldhave location 8, while in a 32×32 grid
its location would be 16. Which of the two units is being used may be indicated, for example, by writing
u = 1/16. However, since in the first case all the distances are lessthan 1, and in the other all the distances
are at least 1, which unit is used can normally be inferred from the description.

To be consistent in this notation, we set up a coordinate system with origin at the bottom left corner of
the square and direct thex andy axes in the standard way, towards the right and up.

Sense. If we fold a horizontal valley fold, and then some distance above it a horizontal mountain fold, we
get a positive pleat. If the mountain fold is below the valley, the difference between the mountain and valley
locations is negative, and so the pleat is negative as well.

Width. Again, this is expressed either in terms of the original square size, or in terms of the grid unit
distance. In the notation, we will combine the information about the sense and the width of the pleat, by
writing the width of a negative pleat as a negative number.

Pleat notation. A pleat formed by a horizontal mountain fold through the center, and a valley fold 1/16
of the square width below it would be written as(8/7)h (the mountain fold is at distance 8 from the bottom
of the square, the pleat is horizontal, and the valley fold is(positive) 1 units below the mountain fold). If the
pleat were negative (valley through the center, mountain a unit below), we would write−(8/7)h. The simple
rule for decoding this notation is: the first number tells us the location of the top crease of the pleat, and the
letter the direction. If the pleat is positive, then the mountain fold is above the valley, so the location of the
mountain fold is given by the first number. If the pleat is negative, then the first number gives the location of
the valley fold.

5 General pleat notation

The basic form. Let’s first consider the basic form of Figure 3(a) and take thepoint of view from which
the model bulges upwards. Suppose each pleat is 1/16 wide and we begin folding from the lower left corner
and continue until we run out of paper. Every pleat we fold is negative, because the coordinate of its mountain
fold is smaller than that of its valley fold. If we begin with ahorizontal pleat, and leave two units before it
(for the lock), the notation for this first pleat is−(3/2)h. The second pleat will be vertical, and written as
−(3/2)v. The second horizontal pleat will begin two units above the first. The first of these unit lengths is
hidden by the previous pleat, and the second is the portion visible in the final model. Thus the second pair
of pleats could be written as−(6/5)h and−(6/5)v. Writing out the whole sequence is tedious, so we can
simplify the notation by introducing an index. The completefolding sequence for the model is the sequence
of pairs of the form

−3i
3i−1

h
−3i

3i−1
v,

wherei ranges from 1 to 5 (the largest meaningful coordinate for a 16-unit grid is 16, and 15 is the largest
multiple of 3 smaller than this).

Simple bowl. In folding this model, we are effectively interleaving two bulges, one starting from the bot-
tom left and the other from the top right corner. For symmetry, we alternate between folding two horizontal
and two vertical pleats. Say we begin with a 32-unit grid. Thefirst horizontal pleat is, as before,−(3/2)h.
Before folding the corresponding vertical pleat, however,we fold another horizontal pleat at the very top of
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the sheet, that is, we fold(29/30)h. Note that this pleat is positive, because its mountain foldis above its
valley. Thus the bowl is completely described by

−3i
3i−1

h
32−3i

32−3i−1
h

−3i
3i−1

v
32−3i

32−3i−1
v,

for i ranging between 1 and 5.

Drawbacks. The simple bowl from the previous example has two mirror lines. (It “almost” has even more
symmetries; only the fact that each pair consisting of a horizontal and a vertical pleat cannot be made at the
same time prevents this model from having the symmetry of a square. In a sense, it is globally symmetric,
but not locally.) However, this symmetry is not really reflected well in the notation. The problem is that
we use the same coordinate system for each pleat. In order to give as much information as possible about
a model without need for complicated calculations, we mightwish our notation to somehow indicate the
inherent symmetries (as well as the “almost symmetries”, which ignore the ordering of adjacent layers). In
the next section we describe such an approach to the notationof pleat tessellations.

6 Compact notation

In most pleat tessellations, each horizontal pleat is immediately followed by a vertical pleat. In other words,
we consistently interlace horizontal and vertical pleats.This leads to models that hold together even when
folded from paper that doesn’t hold creases too well. The tendency of each crease to unfold is kept in check
by its immediate neighbors, which at the same time creates the tension that shapes the final fold without need
for wet folding. What this means for notation is that perhapswe’ve gone too far in trying to describe every
single crease: if we know the current pleat, the next one is almost completely determined. This observation
leads to the next, more restrictive but much more compact andmore visual notation.

Pleat sequences made implicit. The basic form consists of a single sequence of pleat pairs, each hor-
izontal pleat preceded and followed by vertical ones. If we know how many pleat pairs we make, we know
exactly what the final result is. We ignore the distinction between a left-handed and a right-handed model
(determined by whether the first crease is horizontal or vertical). Thus we may as well describe the bulge by
just giving the number of pleat pairs to be folded.

Symmetry. To make the symmetry structure of a pleat tessellation apparent, we specify the degree (the
number of symmetric pleat sequences folded), 1 (which may beomitted) or 2. The goal is to give meaning
to expressions such as 16 (or equivalently 161, the basic bulge model) and 162 (the simple bowl).

Unit pleats. The width of paper used by a pleat of width 1 is actually 3 units: to cross the width of an
unfolded pleat, we first cross a unit in getting to the mountain fold, then turn the corner around the mountain
fold and go back a unit width, and finally turn again, and go another unit to emerge from under the pleat. If
we are describing the model just in terms of pleats, and they are all of the same width, it makes sense to use
the full width of the strip used up by a pleat as a unit of distance. In other words, in the compact notation
writing 16 for a grid size will mean that we can fold 15 pleats from the grid.

Example: bulge. This is the simplest case. If there arek horizontal andk vertical pleats, we write justk.

Example: simple bowl. If the sequence starting from the bottom left is seen as a sequence of positive
pleats, then so should be the sequence starting from the top right. This model consists of two basic pairs of
pleat sequences, and so we write 152.
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Example: pyramid. Here, the folding begins in the center and progresses towards the edges of the sheet.
These are negative pleats, and therefore we write(−15)2.

Example: Two-fold basket. Here, two pleat sequences begin at the centers of two opposite edges of
the sheet. Compared to the basic bulge, one of these is rotated 90 degrees. We writek · i for a lengthk pleat
sequence rotated byπ/2 around an axis normal to the plane of the fold. (Note that this is compatible with
the use of−1 for negative pleats.) Thus the two-fold basket may be denoted by(15i,−15i).

Example: wave. Here, we are simultaneously folding a bulge from one and an upside-down (“flipped”)
bulge from the opposite corner. We denote the flip by the letter f , and so the wave is defined by(15,15f ).

Paper size. We may also specify the paper size (in terms of full pleat width units) before the rest of the
expression. Thus, a wave folded beginning with a 32×32 grid could be written as 32 :(15,15f )2.

Example: fancy bowl. In this model the folding sequence for the upside-down pyramid is interlaced
with the folding sequence for the bowl, resulting in an inverted pyramid in the middle, and four corners
whose shape is exactly the simple bowl shape. We denote this bowl by writing (7,−7 f )2.

Example: second-order bowl. A second-order pleat consists of two opposite pleats next toeach other.
We should group the pairs of simple pleats that form second-order pleats: 32 :(7(1,−1 f ))2

More complicated sequences. The basic rule is: recurse and parenthesize. An expression of the form
(A1)(A2) instructs us to first fold the sequence specified byA1, then the one byA2. The pleats ofA2 will be
placed in between those ofA1. See Figure 4(d) for the interleaved bowl, defined by 32 :(8)2(7)2.

7 Final comments

Suggestions for folding. The patterns given in this paper may be sufficient to allow experienced folders
to reproduce the models. However, in order to make it easier for others, we briefly describe the process. Most
of the pieces described in this paper are based on the square grid. The easiest way to fold a grid is to use a
power of 2 as the number of squares along each side, and to always divide an existing unfolded strip of paper
in two by aligning an edge of the paper sheet with a previouslyfolded crease. Since many parallel folds
will stretch the sheet somewhat, it is best to alternate between dividing in half horizontally and vertically. In
order to maintain integrity of the paper sheet, it is best to fold only valley folds (or only mountain folds). Our
personal preference is to precrease only one half of each pleat, that is, only the mountain fold, and to create
the valley fold “on the fly” once the actual folding begins. The main reason for this is that the multiple layers
of paper will cause all but the first few pleats to lie slightlyaway from their theoretical position. If both
the valley and the mountain fold are precreased, this “creep” leads to problems. This approach to folding is
another factor that makes the compact notation natural, in that it focuses on individual pleats and assumes a
regular grid.

Finally, the lock is achieved by simply folding an edge of thesheet twice: two mountain folds in parallel
creating the impression of a rolled edge. If the pleats are held tightly as this is done (not easy, and best
attempted slowly and only a few pleats at a time), the two folds will prevent the pleats from opening up and
will thus lock the edge.

Acknowledgment. The authors thank the reviewers for a careful reading of the paper and numerous
corrections and suggestions for improving the presentation.
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(a) Basic pleat tessellation, locked (the
Bulge) and unlocked. 15.

(b) Simple bowl: locked.(15)2.

(c) Pyramid.(−15)2. (d) Simple bowl: unlocked.(15)2.

(e) Wave.(15,15f ). (f) Fancy bowl.(7,−7 f )2.

(g) Candy dish.(10,5 f )2. (h) Two-fold basket.(15i,−15i).

Figure 3: Some pleat tessellations.
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(a) Second order bowl. 32 :(7(1,−1 f ))2. (b) Valentine. 32 :(15(1,−1 f )).

(c) Double wave. 44 :(11,11f ,11,11f ). (d) Interleaved bowl. 32 :(8)2(7)2.

Figure 4: More advanced pleat tessellations.
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