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Abstract 
 

The continued fraction expansion of a real number 0>R generates a family of spiral triangular patterns, called 
“tornadoes.” Each tornado consists of similar triangles, any two of which are non-congruent. 

 
Basic Operation 

 
Let 0>R and 10 << s . In the plane, the sequence of points )2sin,2cos()( jRsjRsjV jj ππ=  
for L,1,0=j , which we call the ‘vertices’, naturally converges to the origin. Fix an integer 0>k , which 
is called the ‘modulo’ or the ‘step size’, and join the vertex )( jV with )( kjV +  by the line segment 

)()( kjVjV +  for 0≥j . 
 

Fibonacci Tornado 
 
The Fibonacci numbers nf are defined by 

121 == ff  and 12 −− += nnn fff , 2>n . In the 
previous paper [2], we showed that if 1−= nfk  and 

τ=R , where 2/)51( +=τ  is the golden ratio, 
there exists a 10 << s  such that the vertex 

)( 2++ nfjV  lands on the line segment 

)()( 1 nn fjVfjV ++ +  for each 0≥j . By the Basic 
Operation above, we obtain the spiral pattern of 
similar triangles as shown in Figure 1 ( 2=k ), 
which is called a “tornado”. As k gets larger, we 
could see that the tornado comes out like a blooming 
flower, while the argument jR  of each vertex )( jV  
remains unchanged. 
 Remark that the well-known spirals as in Figure 
2 are different from our tornadoes because they have 
congruent triangles. 

Figure 1: Fibonacci Tornado. ]5,3,[τ  
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R= C0+ 1      p0/q0  0th convergent
        C1+ 1        p1/q1  1st  convergent 
           C2+ 1       p2/q2  2nd convergent 
              C3+ 1      p3/q3  3rd convergent                                     . 
                   Cn＋ 1       pn/qn  n-th convergent 
                        . 
                  . 

 
Real Tornado 

 
A generic real number R also generates a family of tornadoes. As is well-known (see [1]), the continued 
fraction expansion of R as in the Figure 3 is defined by 00 ε+=CR , 10 0 <≤ ε , and 11/1 ++ += nnn C εε , 

10 1 <≤ +nε  for 0≥n , where nC are called the partial denominators. If R is rational, it is related to the 
Euclidean algorithm and stops when 0=nε . The n -th convergent nn qp /  is defined by 00 Cp = , 10 =q , 

1011 += pCp , 11 Cq = , and 111 −++ += nnnn ppCp , 111 −++ += nnnn qqCq  for 0>n . It is known that 

nn qp /  are the best approximations of R , where 
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1  for 0≥n . 

For example, the convergents of 3=R  are 1/1, 2/1, 5/3, 7/4, 19/11, 26/15, 71/41, .... The denominators 

nq and 1+nq  are coprime.  
 
Choose any pair of consecutive convergents nn qp / and 11 / ++ nn qp , and denote by nqq = and 1+=′ nqq .  
Define the step size by qqk −′= . Then there exists a unique 10 << s  such that under the Basic 

Operation the vertex )( qqjV ′++  lands on the segment )()( qjVqjV ′++  and we obtain a spiral 
pattern named as the tornado ],,[ qqR ′ , consisting of similar triangles )()()( qjVqjVjVT j ′++∆=  

for 0≥j . Figure 4 presents the tornadoes ]4,3,3[],,[ =′qqR and ]11,4,3[ . 
The basic idea of the Real Tornado was originally published in Japanese in [3].  Here we show how to 
find a 10 << s . Denote the 
length of the three edges of jT  
by 
   
 )()()( qjVqjVja ′++= , 

 )()()( qjVjVjb += ,  

 )()()( qjVjVjc ′+= . 

Figure 2 :  A Non-Fibonacci Tornado. Figure 3 : Continued Fraction and Convergents 

[ 3 , 3, 4] [ 3 , 4, 11] 
Figure 4 : 3  Tornado. 
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By Figure 5 we can see that 
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The three angles of jT are 
 )(22 kqRqR +=′= ππφ , Rqπδ 2−= , and Rkπθ 2=  
or 
 )(22 kqRqR +−=′−= ππφ , Rqπδ 2= , and Rkπθ 2−= , 
where the signs are chosen to satisfy that δφ sin,sin and θsin  are all positive. The law of sines is 
expressed by 

    
φδθ sin
)(

sin
)(

sin
)( jcjbja

== , 

and we obtain the equation 
    0)2sin()2sin()2sin( =+′−′ kRqRsqRs qq πππ .        
It is easy to see that this equation has a unique solution 10 << s .  
 
 

Additional Results 
 
Conversely, we can also prove that any possible tornado ],,[ qqR ′  with qq ′,  positive is related to the 
continued fraction expansion of R .  
Theorem: Let R  be a real number and qq ′,  positive integers. There exists a tornado ],,[ qqR ′ if and only 

if R  has a convergent 
n
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, 10 +≤< nCc , where we denote 

by 1,, ++=′== nnnn pcppqqpp  and 1++=′ nn qcqq , such that 
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, and 

(2)  2/1}{}{ >′− RqqR  , where [ ] 1}{0 <−=≤ xxx denotes the fractional part.  
 
See [4] for the proof and further discussions. Note that the golden ratio τ is a special irrational number 
which has no intermediate convergents. 
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Figure 5 : Principle. 
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12 ≠= Risez π of the largest magnitude. Note that in our setting above, the ratioα  tends to 0 or 1 as R  
approaches to qp /  or qp ′′ /  respectively. 
 

References 
 

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fifth edition, Oxford, 1979. 
[2] Akio Hizume, Real Tornado, MANIFOLD #17, pp. 8-11. 2008. (in Japanese) 
[3] Akio Hizume, Fibonacci Tornado, Bridges Proceedings, pp. 485-486. 2008. 
[4] Akio Hizume and Yoshikazu Yamagishi, Monohedral similarity  tilings, in preparation. 
 

 

[7/12, 5, 7] 

[7/12, 2, 5] 

[0.28, 3, 4] 
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[1.45, 9, 11]

Figure 6 : Real Tornado Samples. 
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