Fibonacci Tornado Phyllotaxy spirals consisting of all similar triangles

Akio Hizume
Star Cage Institute of Geometry
Chiba, Japan
E-mail: akio@starcage.org
http://www.starcage.org

Abstract

"Fibonacci Tornado" is a generalization of the classical phyllotaxy spirals, which consist of all similar triangles. The result is a computer graphic design for a public sculpture. These spirals based on phyllotaxy are only possible for a restricted set of numbers — the Fibonacci numbers!

Fibonacci Tornado

Figure 1: Fibonacchi Tornado mod 2 as a computer graphic design for a public sculpture

You can choose any Fibonacci Number F(j). where F(0)=0, F(1)=1, F(j)=F(j-1)+F(j-2), integer $j \ge 2$. On the recurrence diagram as shown Figure 2, it should require the following formula.

$$\delta = F_{(j+1)} *2 \pi / \tau$$

$$\phi = F_{(j+2)} *2 \pi / \tau$$

where $\tau = (1 + \sqrt{5})/2$, that is the golden ratio.

The ratio of similarity *s* which is represented as $a_{k+1}/a_k = b_{k+1}/b_k = c_{k+1}/c_k$ must accord the following formula.

in case of
$$j=3$$
,
 $a=1$
 $b=\sin \delta / \sin(\delta + \phi) = 0.7966510959 \cdots$
 $c=\sin \phi / \sin(\delta + \phi) = 0.5387910616 \cdots$

 $bs^{F_{(j+2)}}+cs^{F_{(j+1)}}=a$

Figure 2: Recurrence Diagram

We can decide one logarithmic spiral which contains all vertexes of triangles.

It should be represented as;

$$r=G^{\omega}$$

The logarithmic spiral can be clockwise or counterclockwise.

We should get value of the G which makes r=s under each case of $\omega=2\pi (\tau-1)$ or $\omega=2\pi (2-\tau)$.

$$G=e^{(log(s)/\omega)}$$

in case of $\omega = 2\pi (\tau - 1)$ and j = 3, $G = 0.9822502411 \cdots$

in case of $\omega = 2\pi (2-\tau)$ and j=3, $G'=0.9714381720\cdots$

Then we get the figure right.

Figure 3: $mod \ 2 \ (j=3) \ spiral$

Let me show the solution from $mod\ 1\ (j=2)$ to $mod\ 3\ (j=4)$ on Figure 4.

Figure 4: The Fibonacci Tornado from mod1 to mod3

References

- [1] This article was published in Japanese on MANIFOLD #11, pp. 7-8. 2005.
- [2] Akio Hizume, inter-native architecture OF music, ISBN 978-4-9902966, pp. 117-118. 2006.
- [3] See more images in http://www.starcage.org/dragon/tornado.html.