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Abstract 
 

A computer aided geometric model for a polyhedral transformation was written in C++, OpenGL and GLUT. This 
geometric model allows a user to interactively change the shape of a closed convex polyhedron derived from 10 
face planes in a fundamental region. Given different inputs, a different shaped polyhedron was output. For some 
inputs, the output was a Platonic or Archimedean polyhedron. For other inputs a more complex polyhedron was 
output. This transformation is based on a fundamental region that is formed by 3 symmetry planes intersecting at 
the centroid of a polyhedron. This fundamental region is combined with 3 different sets of transformations to 
produce a polyhedron for either a tetrahedral, an octahedral, or an icosahedral family of polyhedra. Using the 
interactive software, a polyhedron transforms smoothly and continuously from a regular polyhedron, to a truncate 
polyhedron, to a dual polyhedron, to a stellate polyhedron along with many transitional polyhedra. 
 
 

1. Introduction 
 

This paper extends a previous paper presented on Coxeter Day at Bridges 2005 [1] where a 3 
plane computer aided geometric model was presented. This 3 plane model was presented using 
10 minutes of computer animation. More recently work has produced interactive software to 
extend that 3 plane computer model to a 10 plane computer model. Software using Microsoft 
Visual Studio C++ for modeling, OpenGL for graphics, and GLUT for interaction has resulted. 
A video documentary was produced to show an interactive experience with this software. 
Subsequently, a DVD was authored to include this documentary [2]. 
  
 The 3 plane model produces both Platonic and Archimedean polyhedra, as well as, many 
transitional polyhedra. The 3 plane model uses 9 vectors from 3 foundational polyhedra; a 
regular polyhedron, its dual and their mid-figure. For example: the tetrahedronal family uses 9 
vectors, 3 each, from a tetrahedron, a dual tetrahedron and an octahedron. In addition the 
octahedronal family uses vectors from an octahedron, a cube and a cubeoctahedron, where the 
icosahedronal family uses vectors from an icosahedron, a dodecahedron and an 
icosidodecahedron. A tri-linear combination of the 9 vectors from each of these 3 families 
produces 3 vectors for a polyhedron that transforms it shape in the computer animation. 
 
 The 10 plane model uses 40 vectors from 4 foundational polyhedra. The foundational 
polyhedra are a regular polyhedron produced by adding 7 planes to the initial 3 plane model, a 
truncate polyhedron, a dual polyhedron, and a stellate polyhedron. Many polyhedra are formed 
when transitioning between these 4 foundational polyhedra. 
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 In 1982 Haresh Lalvani, an architecture faculty at Pratt Institute in Brooklyn, New York, 
exhibited his polyhedral transformations. Many paper models were displayed along with 
descriptions and drawings. This work appeared in his Ph.D. dissertation completed under 
Buckminster Fuller at the University of Pennsylvania [3]. His 10 plane transformation was 
depicted by a series of drawings in his dissertation and physical models in his exhibit. 
 
 The initial 3 plane model and the subsequent 10 plane model use C++ code LIB3D 
written by Pat Hanrahan, who is currently a computer science faculty at Stanford University. 
This code was first written in C when we were colleagues at NYIT Computer Graphics 
Laboratory. The inputs for the procedures are vectors, points, lines, and planes. The outputs are 
also vectors, points, lines, and planes derived from geometric relationships between the inputs. 
For example, the intersection of 3 planes is a point. The LIB3D code leads the computer aided 
geometric design model to be a series of geometric relationships, with the final output being a set 
of points for polygons that are displayed as a polyhedron. 
 
 

2. Explosion-Implosion Polyhedral Transformation 
 

Haresh named a polyhedral transformation as an Explosion-Implosion. In Figure 1 an 
Explosion-Implosion is seen as a vertex exploding to a face, then imploding to a vertex. An 
edge explodes to a rectangle, then to a square. A square implodes to a rectangle, then to an 
edge, that is orthogonal to the initial edge. A face implodes to a vertex, then explodes to a face. 
In Figure 1 a vertex of a blue icosahedron (a) explodes to a red pentagon (b,c,d,e,f) of a red 
dodecahedron (g). An edge of an blue icosahedron (a) explodes to a green rectangle (b,c), then a 
green square (d) and implodes to a green rectangle (e,f), and then to an edge of a red 
dodecahedron (g). Finally, a blue icosahedron face (a) implodes to a blue vertex of a red 
dodecahedron (g). Note that an edge of the blue icosahedron (a) is orthogonal to an edge of the 
red dodecahedron (g). 
 

 
a           b        c        d     e   f           g 

 
Figure 1: Vertices, edges, and faces are exploding and imploding. 

 
 

3. A Hypercube with a Unit Edge Length as a Reference Space 
 
The 3 plane model has a cube with unit edges for a reference space for its transformation as 
there are 3 Explosion-Implosion transformations for a vertex, an edge and a face Figure 2a. The 
10 plane model has 4 foundational polyhedra using a hypercube with a unit edge as a reference 
space for its polyhedral transformation, Figure 2b. A point in a unit edge length reference space 
has coordinates that vary between 0 and 1 and represents a different polyhedron. A regular 
polyhedron from these models has edge lengths that vary between 0 and 1. Corner (1,1,1) of the 
reference cube is the same polyhedron as corner (1,0,0,0) of the reference hypercube. Corner 
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(1,1,1,1) of the reference hypercube has 10 faces visible in the fundamental region, 1 face for 
each of the 10 vectors and 10 planes in the fundamental region of the model Figure 2c and 
Figure 3a. 

 

 
              (a)                   (b)         (c) 

  
Figure 2: A reference cube (a), a hypercube (b) 10 normal vectors of fundamental region(c). 

 
4. Fundamental Region for a 10 Plane Model 

 
Three primary faces; red(1), green(2) & blue(3) for a regular polyhedron 3(b) are orthogonal to 
symmetry vectors, at the corners of the fundamental region. Three secondary faces; yellow(4), 
cyan(5), and magenta(6) for a stellate 3(e) are orthogonal to vectors at the mid-sides of the 
fundamental region. A tertiary pink face (7) is orthogonal to a vector between a red & white 
face and a magenta & yellow face. A tertiary lime face (8) is orthogonal to a vector between a 
green & white face and a yellow & cyan face. A tertiary aqua face (9) is orthogonal to a vector 
is between a blue & white face and a cyan & magenta face. In the center is a white face (10) for 
the 3 truncate faces Figure 3c & a single dual face Figure 3d.  
 

                                         
       (a)   (b)       (c)            (d)     (e) 
 

Figure 3: faces (a), regular  (b), truncate (c), dual (d), stellate (e) of fundamental region. 
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5. Polyhedra from the 10 Plane Model with Hypercube Reference Space 

 
A polyhedron with different edge lengths is considered a different polyhedron. Point (1,0,0,0) 
represents a regular polyhedron with icosahedronal symmetry (5,2,3), Figure 4a. A truncate 
polyhedron is referenced at point (0,1,0,0), Figure 4b, a dual polyhedron is referenced at point 
(0,0,1,0), Figure 4c, and a stellate polyhedron is referenced at point (0,0,0,1), Figure 4d. The 
polyhedra referenced at the other corners of the hypercube appear in Figure 4e, Figure 5, and 
Figure 6. There are 15 non-null polyhedra at the corners of the hypercube reference space. 

 
 Interacting with software to observe the display of polyhedra continuously changing 
shape, has been very stimulating for those who are interested in polyhedra. Will and I plan a 
video documentary of an instructive experience as well as author it to a DVD. 

 

 
                  (a)                        (b)                        (c)                         (d)   (e) 

 
Figure 4: Regular(1000) (a), truncate(0100) (b), dual(0010) (c), stellate(0001) (d), (1100) (e). 

 
 

 
                  (a)                        (b)                        (c)                        (d)   (e) 

 
Figure 5: (1010) (a), (1001) (b), (0101) (c), (0011) (d), (0110) (e). 

 
 

 
                  (a)                        (b)                        (c)                        (d)   (e) 

 
Figure 6: (1011) (a), (1101) (b), (1110) (c), (0111) (d) (1111) (e). 
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6. Implementation for a 10 Plane Explosion-Implosion 
 
6.1. 4 Foundational Polyhedra. This implementation uses 10 normal vectors, Figure 2c, to 
position 10 planes for each foundational polyhedron. Once 10 planes have been positioned, sets 
of 3 planes intersect in a point. Sets of these points combine to form face polygons. A set of 10 
faces are numbered and displayed in Figure 3a. These point coordinates for the faces are 
transformed with symmetry transformations to display full closed convex polyhedra in Figures 
4, 5, and 6. 
 
6.2. Vectors. Four sets of 10 vectors were computed from on a regular, truncate, dual and 
stellate polyhedron [4]. For each foundational polyhedron, 1 normal vector was computed for 
each of the 10 faces in the fundamental region, Figure 3b. These normal vectors lie on the 
boundary or in the interior of the fundamental region Figure 2c. These 40 vectors are blended 
in 4 quad-linear equations with 4 coordinates from a point within the unit edge hypercube to 
produce a single set of 10 vectors. These 10 vectors are normalized so that they become 
meaningful vectors for 10 face planes. 
 
6.3. Planes, Points, Faces. With this set of 10 face planes and the 3 symmetry planes on the 
sides of the fundamental region, a set of 21 points are computed to display 10 faces. Three 
planes intersect to compute each point. This implementation works correctly for p, q, and r 
values of (1,1,1). A solution for the other values of p, q, and r between 0 and 1 is currently under 
development. 
 
 Viewing the colored normal vectors in Figure 2c led to an understanding of the locations 
of faces for this 10 plane computer model. The fundamental regions in Figure 7a displays 
implosion-explosion transformations of vertices, edges, and faces by the 10 plane model. 
 
 

7. Display and Interaction 
 

7.1. Display. In addition to displaying a polyhedron and a variety of parameters and their values 
are displayed in two windows to observe while interacting with the 10 plane explosion-
implosion computer model, Figure 7b. One window gives the user a view of polyhedra 
continuously changing shape and rotating to change the view. Some parameters change value 
continuously while other parameters change value discretely. The Modern Computational 
Geometry Visualizer window and the Controls window Figure 7b displays values and provide 
an opportunity to change values. The P:5, Q:2, and R:3, are the symmetry parameters for the 
vertex, edge, and  face symmetries for the icosahedral family of polyhedra,. The p:1, q:1, and 
r:1, are 3 parameters for the 3 plane model [1]. The r:1, t:1, d:1, and s:1 are the 4 parameters for 
the 10 plane model. The zoom:value of 294.73%, provides the user with the relative size of the 
polyhedron being displayed; when the zoom factor is the same for two different displays the two 
polyhedron are in the same size relative to each other. In general, the 10 plane polyhedra are 
larger than the 3 plane polyhedra so that it needs a larger zoom factor to be seen in the display 
window. A mouse is used to either zoom the view in or out with the wheel, or rotate the 
displayed polyhedron for a different view by moving the mouse in the Visualizer window as if 
rotating a roller ball. 
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            (a)                       (b) 

 
Figure 7: 16 fundamental regions in 4 squares of a hypercube (a) & model windows (b). 

 
7.2. Controls. The Controls window provides handles to interact with the 10 plane explosion-
implosion computer model. The Camera Rotation continuously rotates the polyhedron, where 
the Stop Rotation ends this continuous rotation. The Alternate Colors uses two tints of a hue to 
accentuate the faces of two adjacent fundamental regions, Figure 8a. Polyhedra are 
considerably different in size because of the edge length of the different polyhedra. The Force 
Zoom control helps the user see a full polyhedron quickly. The Fund Region control displays 
only the faces of the fundamental region, Figure 8b, where the Fixed control displays the 
fundamental region with the lower left corner of the green face is in the center of the screen and 
the bottom edge and the right edge are parallel to the sides of the screen, Figure 8b. The input 
for symmetry parameters of the 10 plane model can be changed from P being 3 for tetrahedral, to 
4 for octahedral, and to 5 for isocahedral families of polyhedra. The p, q, and r are the 
coordinates of a point in a unit edge cube for the 3 plane model. The reg, tr, du, and st are the 
coordinates of a point in a unit edge hypercube for the 10 plane model. Plane count allows the 
user to choose between the 3 plane model and the 10 plane model. 
 

   
            (a)       (b) 

 
Figure 8: Alternate colors for polyhedron (a) and a fundamental region (b). 

 
 
7.3. Colors. The 10 faces were organized into 4 sets for coloring. A first set of 3 faces was the 
primary colors of red, green and blue for a regular polyhedron, Figure 4a. A second set of 3 
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faces were the secondary colors of yellow, cyan, and magenta for a stellate polyhedron, Figure 
4d. The face for a dual polyhedron, Figure 4c, was white and faces for a truncate polyhedron, 
Figure 4b were red, green, blue, and white. The final 3 faces were pink, lime, and aqua as blends 
between red and white, green and white, and blue and white Figure 8b. The hue of each color 
has been adjusted, attempting to produce displays, where the faces appear to be adjacent to each 
other in their 3-dimensional viewing space. 
 
7.4 Plotting. The Face Plotting option in the Control window displays faces that could be cut 
out to build a physical model of a polyhedron from the 10 plane model, Figure 9. 
 

         

     
 

Figure 9: 10 Flat faces for plotting. 
 
 

8. Animation, Documentary, Interaction. 
 

8.1. Animation. While a staff scientist at NYIT Computer Graphics Laboratory from 1980 to 
1990, a 3 plane computer model for an explosion-implosion polyhedral transformation was 
animated. A range of shape changes for this computer model was presented in 10 minutes. There 
was a positive response to the first showing of this animation at a conference of geometers at 
Smith College in 1989.  It was very excited for me to have Coxeter view the animation as part of 
a solution for the computer model. The algebra for this polyhedral geometric model started with 
his writings [4]. After viewing the animation he said, “This work is for a next generation of 
geometers”. The animation introduced viewers to a dynamically changing shape displayed for 
the explosion-implosion of a 3 plane computer model. 
 
8.2. Documentary. In the fall of 2006 an interactive program was started that would further 
assist in the understanding of this 3 plane model by utilizing an interactive display instead of an 
animation. We started with old C code and knowledge of C++ code, OpenGL and GLUT to 
produce an interactive program exhibiting a solution to a 3 plane explosion-implosion computer 
model. At first we aspired to tell the same story that was told in the animation. We changed our 
thinking to fit an interactive display to be video taped. A documentary of Will interacting with 
the code was produced. This documentary can be seen on a DVD and is considerably different 
from the animation, but it displays a similar range of shapes that appear in the animation, 
however it produced a considerably higher level of energy utilizing an interactive display. 
 
8.3. Interaction. The 3 plane model has been extended to a 10 plane model. While at NYIT in 
1989, while visiting with Pat Hanrahan, when he was faculty at Princeton, an initial result was 
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obtained [5]. This initial result has been extended into an interactive program for the 10 plane 
model. As the 10 plane model work developed values for parameters were displayed as well as 
the opportunity to interactively change values for parameters. Viewing this interactive explosion-
implosion polyhedral transformation has proven to be considerably more stimulating. As the 
complexity of the polyhedron grows so grows the stimulation from viewing the changes of 
shape. Initially animation was helpful in telling a story, eventually interactivity became a more 
powerful experience to tell the story of a dynamic phenomenon of polyhedra changing shape. 
 
 

9. Conclusion 
 

A 10 plane explosion-implosion polyhedral transformation was implemented to provide an 
interactive display of polyhedra that are well-behaved structures in a 3-dimensional space. Each 
polyhedron is referenced by a 4-dimensional point from a unit edge hypercube. Lalvani’s 
explosion-implosion polyhedral transformation was conceptually clear from his dissertation and 
his exhibit. A computer model was derived for this concept by writing C code, in the late 1980’s, 
producing computer graphics animation as a result in 1989. More recently, Will Hawkins and I 
have been able to update the 1980’s code for an interactive display. 
 
Animation, documentation, and interaction are different media for telling a story. When 
attempting to tell a similar story the different medium accentuate their strengths. Given a choice, 
interaction is the media that generates the highest level of energy. It does not mean that the 
others media are less valuable, only that they are different in that the technology to support each 
is very different. Animation, documentation, and interaction each have a significant value and all 
3 help students to better understanding a 3-dimensional dynamic computer aided geometric 
model. 
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