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Abstract

The process of mapping a ternary rhythm of, say 12 pulses, to a binary rhythm of 16 pulses, such that musicologically
salient properties are preserved is termed binarization. By analogy the converse process of mapping a binary rhythm
to a ternary rhythm is referred to as fernarization. New algorithms based on geometric proximity rules are proposed
and investigated for the binarization and ternarization of musical rhythms with the goal of understanding the historical
evolution of traditional rhythms through inter-cultural contacts.

1 Introduction

Examples of the evolution of musical phenomena may be observed in those musical traditions created by
the mixture of other existing traditions, such as in jazz and Latin American music. Benzon [2] analyzes the
development of ever more differentiated control over rhythmic patterns in the jazz music of the twentieth
century, and argues that rhythmic elaboration in traditional jazz was followed by melodic progress in swing,
and finally harmonic control in bop. In an award-winning book, Pérez Fernidndez [7] describes how African
ternary rhythms that travelled to the Americas may have mutated to duple-metered forms as the more tradi-
tional music developed into more commercial popular music, a process he labelled binarization. For several
critical discussions of the theory put forward in this book see [17], [11], and [4]. Manuel [12] describes a
similar binarization transformation that occurred in Spain and Cuba, in which ternary 3/4 and 6/8 rhythms
such as the flamenco Guajira mutated into the binary rhythm Guajira-Son. A more general discussion of the
evolution of Cuban rhythms may be found in [1].

Toussaint [21] reviews methods that differ from the aforementioned approaches, and mimic those used
in bioinformatics, where an organism is represented by its DNA molecule which, in turn, is modelled as a
sequence of symbols [16]. However, the use of phylogenetic trees in the analysis of families of rhythms is
just beginning [19], [20], [6].

Here we are concerned with mathematical models for two particular kinds of rhythmic transformations,
namely, binarization and ternarization. In order to compare our models we use the transformations contained
in the work of Pérez Ferndndez [7]. The algorithms proposed and investigated here are useful for a variety
of applications including their use as tools for composition, for exploring the evolution of rhythms, and for
studying the mechanisms of rhythmic transformations.

2 Mechanisms of Rhythm Mutation

A typical mutation operation found in the music literature explored by David Lewin [10], which he calls a flip
in the context of the pitch domain (scales, chords, and pitch-class-sets), interchanges two adjacent elements
in the cyclic sequence. Transferring this idea into the rhythmic domain for example, we could transform the
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clave Son timeline given by [x . . X .. X ... X. X .. .] into the clave Rumba timeline by performing a flip on
the 7th and 8th pulses toobtain [X. . X...X..X.X...].

In [20] the flip operation is called a swap, and the swap distance between two rhythms with the same
number of onsets is defined as the minimum number of swaps needed to convert one rhythm into the other. In
order to be able to compare two rhythms with different numbers of onsets the swap distance was generalized
in [6].

In computer science the first algorithms to compare two sequences in terms of the minimum number of
a set of predefined operations necessary to convert one sequence to the other were designed for problems
in coding theory by Vladimir Levenshtein [9]. His distance measure, which now goes by the name of edit
distance, allows three operations: insertions, deletions, and substitutions (also called reversals).

A more general approach to the design of measures of string similarity is via the concept of an assign-
ment, well developed in the operations research field. An assignment problem deals with the question of
how to assign n items to m other items so as to minimize the overall cost [3]. If the two sets of n and m items
are the corresponding two sets of onsets of two rhythms to be compared, and the cost of assigning an onset
x of one rhythm to an onset y of the other rhythm, is the minimum number of swaps needed to move x to the
position of y, then the cost of the minimum-cost assignment is equal to the swap distance discussed in the
preceding [6].

3 The Data

Pérez Ferndndez follows the seminal work of the musicologist Nketia [14, 15] for some of his terminology.
Nketia relates musical phrases to timespan, which is of fixed duration. The timespan, typically identified
with a 12/8 bar when transcribing African music, is further divided into regulative beats, whose function
is to serve as a reference for dancers. These regulative beats divide the timespan into two equal parts. By
refining the timespan down to its smallest unit we find the basic pulse. The timespan is measured in terms of
the number of basic pulses. Pérez Ferndndez then introduces the metric foot in between the regulative beat
and the basic pulse as an intermediate level of rhythmic grouping. Metric feet consist of groupings of two or
more basic pulses according to either their duration or accentuation patterns. Here we consider metric feet
only with regards to duration. The main metric feet considered in this paper appear in Figure 1 .

Rhythmic Foot ‘ Rhythm ‘ Duration Pattern H Rhythmic Foot ‘ Rhythm ‘ Duration Pattern

Trochee [x.x] L-S Tribrach [x x x] S-S-S
Tamb [x x.] S-L Choriamb [x.xxx.] L-S-S-L
Molossus [x.x.x.] L-L-L Zamba foot [xxxxx.] | Tribrach+Iamb

Figure 1: The relevant metric feet. (L=long, S=short)

We now describe the data used for testing our models. We first introduce a set of ternary rhythms having
6-pulse timespans ([7], pages 82, 83, 91 and 101). They are combinations of two metric feet. Figure 2
shows those rhythms and their binarizations. Names in the rightmost columns correspond to one of the many
possible names for the binarized rhythm.

Description of Rhythm ‘ Ternary Rhythm ‘ Binarized version ‘ Description of the Binarized Version

Tribrach + Trochee [Xx xxX.X] [xx.xxX.Xx.] Argentinean milonga
Zamba Foot [XxXxXX.] [xx.xx.Xx.] Argentinean milonga
Choriamb [x.xxx.] [x..xx.x.] Habanera

Figure 2: Binarized rhythms having timespans of 6 basic units.

For the second set of rhythms, Pérez Fernandez gathers rhythmic patterns with timespans of 12 pulses,
and their corresponding binarized versions ([7], page 102 and following); see Figure 3. The rhythms consist
of the 6/8 clave son (also called the clave fume-fume), [20], some of its variations, and the ubiquitous bembé,
the binarization of which was already studied by Chernoff [5].



Description of Notation of Binarized version Description of the
Rhythm the Rhythm Binarized Version

6/8 clave Son [x.x.x..X.X..] [X..Xx..X...X.X...] clave Son
6/8 clave Son [x.x.x..X.X..] [X..x..X..X..Xx...] | Variation Son - 1
6/8 clave Son variation 1 | [x.Xx.X..xXx.Xx.X] | [X..X..X...X.X.Xx.] | Variation Son -2
6/8 clave Son variation2 | [X.X.X..X.XX.] | [X..X..X...X.X.Xx.] | Variation Son -2
Bembé [x.x.xx.Xx.X.X]|[X..X..XX..X.X..x] | Binarized bembé

Figure 3: Binarized rhythms with timespans of 12 basic units.

Names of the binarized rhythms in the last column are provided for reference in the following sections.

For a third set of rhythms, Pérez Ferndndez displays what he calls resources of rhythmic variation ([7],
pages 73-74 and 112-122). These rhythms are formed by variations of the molossus [x . x . X .], the first part
of the clave son. Figure 4 shows these rhythmic variations with their associated binarized counterparts. Note
that some variations have more than one binarized version.

Description of Rhythm ‘ Notation of the Rhythm ‘ Binarized version ‘ Name of the Rhythm ‘

Variation 1(c) [xxx.x.] [x.xx..x.] Binarized var. 1(c)-1
Variation 1(c) [xxx.x.] [xx.x..x.] Binarized var. 1(c)-2
Variation 1(d) [.xx.x.] [..xx..x.] Binarized var. 1(d)-1
Variation 1(d) [.xx.x.] [.x.x..x.] Binarized var. 1(d)-2
Variation 2(c) [Xxxx.xX] [Xx.xX..xX] Binarized var. 2(c)

Variation 4(c)

[Xx X X X X X]

[xx.Xx.xxX]

Binarized var. 4(c)

Variation 4(a) [x.xxxX] [x..xxxXx.] Binarized var. 4(a)
Variation 5(a) [x.x...] [x..x....] Binarized var. 5(a)
Variation 6(c) [xxx..Xx] [xx.x...Xx] Binarized var. 6(c)

Figure 4: Binarized rhythms derived from rhythmic variations.
Again, names of the binarized rhythms are mnemonics used for reference to them in the following sections.
4 Mapping Rules

The process of binarization proposed by Pérez Fernandez uses the metric foot as the starting point. Indeed,
the binarization of a ternary rhythm is broken down in terms of its metric feet. Afterwards, each foot is
binarized according to a set of binarization rules, also called mapping rules. Finally, the binarized feet are
put back together so that they constitute the new rhythm. For instance, let us consider the binarization of
the zamba foot [x x x x x .]. It is formed by the concatenation of a tribrach [x x x] and an iamb [x x .]. For
this case, the mapping rules are [x x x] — [x X . x ] and [x X .] — [x . X . ]. Finally, gluing these patterns
together yields the binarized rhythm [x x . x x . x .]. All the mapping rules used by Pérez Ferndndez are
shown in Figure 5.

Metric Feet | Binarized Patterns | Snapping Rules || Metric Feet | Binarized Patterns | Snapping Rules
[x x x] [xx.x] NN [x x.] [xx..] NN
[x.xx] CN [x.x.] FN
[x xx.] CCN
[x.x] [x..Xx] NN
[x.x.] FN

Figure 5: The transformations used by Pérez Ferndndez, and their proposed geometric interpretations.

The rules described in the preceding are expressible in terms of snapping rules. Some transformations
of a ternary metric foot (or rthythm) into a binary pattern can be interpreted geometrically as a snapping




problem on a circle. Consider a three-hour clock with a four-hour clock superimposed on it, as depicted in
Figure 6. The problem is reduced to finding a rule to snap onsets in the ternary clock to onsets in the binary
clock. Since both clocks have a common onset at “noon” (the north pole), this onset is mapped to itself.
For the remaining ternary onsets, several rules may be defined. One that arises naturally is snapping to the
nearest onset. By doing so, the durational relationships among the onsets are perturbed as little as possible,
and intuitively, one would expect that the perceptual structures of the two rhythms should remain similar.
For instance, this rules takes a tribrach [x x x] to [X x . x]; it is called the nearest neighbour rule (NN). Other
rules to be used in our study are the following: furthest neighbour rule (FN), where each onset is snapped
to its furthest neighbour; clockwise neighbour rule (CN), which moves an onset to the next neighbour in a
clockwise direction; and counter-clockwise neighbour rule (CCN), which is analogous to the clockwise rule,
but travels in counter-clockwise direction. In Figure 5 the two rightmost columns identify the mapping rules
used by Pérez Ferndndez in terms of the four snapping rules just introduced.

The reader may wonder what the rationale is for using the counter-intuitive FN rule. Two points are
worth mentioning here. First, one would expect mapping rules that make musicological sense to use high-
level musicologically relevant knowledge to select which onsets in one rhythm should be mapped to which
onsets in the other. This is a difficult problem left for future research. In this study we have chosen to
start our investigation with the simplest context-free rules possible, purely mathematical rules if you will,
to determine how useful they can be. Therefore, from a combinatorial and logical point of view it makes
sense to include the FN rule in our study. Second, and surprisingly, we observed that the musicological rules
used by Pérez Ferndndez at the metric foot level were, in several cases, matched perfectly only by the FN
snapping rule. Thus we were motivated to compare this rule with the others in order to better understand the
entire snapping process.

C 3 C 3
D )

NN rule FN rule CNrule CCN rule

Figure 6: The snapping rules used.

Note that the nearest neighbour and furthest neighbour rules may snap two onsets onto one and the same
onset. Consider the tribrach [x x x] with the furthest neighbour rule; one obtains the pattern [x . x.]. On
the other hand, when these snapping rules are applied to an entire rhythm, an onset may be mapped to two
different onsets, since it may have two nearest or furthest neighbours. For example, in the ternarization
of [x X . X X . X.], we obtain two possible rhythms, namely, [x x x X X .] and [x x X x . X] . This creates the
problem of breaking ties; we deal with this problem in the following.

5 Design of the Experiments

Since this paper is concerned with rhythmic transformations in general, we compute the mappings in both
directions, that is, from ternary rhythms to binary rhythms, and from binary rhythms to ternary rhythms. As
a matter of fact, we would like to have at our disposal a set of purported ternarized rhythms, just as we have
for binarization. In the absence of such a set, we use Pérez Fernandez’s set of binarized rhythms; refer to the
appropriate columns in Figures 2, 3 and 4.

The first experiment consists of the binarization of the ternary rhythms contained in Pérez Fernandez’s
books [7] (Figures 2, 3 and 4) using the four snapping rules defined in the preceding section: NN, FN, CN,
and CCN. These four rules yield procedures for both binarization and ternarization, since they are applicable



in both directions. Furthermore, in this study we apply them to the whole rhythmic pattern rather than at the
metric foot level.

The second set of experiments deals with centers of rhythm families. Such centers were first used by
Toussaint [19, 20] for analysing binary and ternary clave rhythms, and proved to be good initial approxima-
tions for the center-points of phylogenetic trees. Toussaint also computed the complete phylogenetic graphs
of families of rhythms. However, due to lack of space, we do not carry out such an analysis here.

As pointed out in Section 4, when the NN and FN snapping rules are used, ties may arise when an onset
has two equidistant nearest or furthest neighbouring pulses. Among the many ways to break ties, we have
chosen a method based on rhythmic contours because of their importance in music perception [13, 18].

5.1 Rhythmic Contours

Rhythmic contours have been used for the analysis of non-beat-based rhythms, for the description of general
stylistic features of music, for the design of algorithms for automatic classification of musical genres, and
for the study of the perceptual discrimination of rhythms. The rhythmic contour is defined as the pattern
of successive relative changes of durations in a rhythm. Some authors represent the rhythmic contour as a
sequence of integers reflecting these changes; others simply describe the changes in a qualitative manner,
observing whether a duration becomes longer, shorter or remains the same. As an example, consider the
rhythmic contour of the milonga [xx.xx.x.]. First, we determine its ordered set of durations 12122. The
pattern of durations using integers is {1,—1,1,0,—1}, and if we are only concerned with the direction of
these changes, we can write {+ — +0—}. We use the latter definition of rhythmic contour. The length of
the rhythmic contour depends only on the number of onsets in the rhythm. To break ties, we compare the
rhythmic contours of the snapped rhythms with those of the original rhythms. Comparison of two rhythmic
contours can be made by using the Hamming distance. The Hamming distance counts the number of places
in which the rhythmic contours do not match. This distance, however, does not take into account where the
mismatches occur. Finally, the contour that has the smallest Hamming distance to the contour of the original
rhythm is chosen to break the tie. Some cases arise where one contour is shorter than the other, and hence
both contours cannot be compared using the Hamming distance. Such cases appear when two onsets are
snapped onto the same pulse. As a result, the total number of onsets in the snapped rhythm is smaller than
that of the original rthythm. In these cases, a different measure has to be used for the comparison.

5.2 Centers of Rhythm Families

The second set of experiments comprises the computation of several types of centers. Given a family of
rhythms with time-spans of n-pulses, we define a center as a rhythm that optimizes some distance function
either within the family or in the entire space of rhythms of time-span n. Here we consider centers that convey
the idea of similarity. In order to do so, we select as optimization criteria the minimization of the maximum
distance (min-max), and the minimization of the sum (min-sum) to all rhythms in either the family or the
entire space. For distance (similarity) functions, we select two common distances, the Hamming distance
and the directed swap distance [6]. Thus, we have eight possible types of centers, given by the two possible
distances, the two possible optimization criteria, the two possible sets of rhythms, and whether optimization
is carried out within the given family or the entire space.

The swap distance between two rhythms of equal time-span is the minimum number of interchanges of
adjacent elements required to convert one rhythm to the other. An interchange of two adjacent elements,
either rests or onsets, is called a swap. If the condition of requiring that both rhythms have equal timespans
is relaxed, then a more general distance, the directed swap distance, can be defined as follows. Let rhythm A
have more onsets than rhythm B. Then, the directed swap distance is the minimum number of swaps required
to convert A to B according to the following constraints: (1) Each onset in A must go to some onset in B;
(2) Each and every onset in B must receive at least one onset from A; (3) No onset may travel across the
boundary between the first and the last position in the rhythm.



6 Experimental Results

The families of the rhythms analysed were grouped according to the lengths of their timespans. Given the
scope of this paper, we cannot describe all the details of all the experiments carried out for the four snapping
rules. Due to the problem of breaking ties between rhythms, tables displaying the results are several pages
long in some cases. We show the most relevant results and briefly comment on those remaining. For the
centers of rthythm families we follow a similar approach. Centers computed on a given family of rhythms
are discussed at length, whereas centers computed on the entire space of rhythms are not analysed in full; in
some of these cases nearly one hundred instances of centers were obtained.

6.1 Snapped Rhythms
We begin with binarization using the NN rule. Figures 7 and 8 display the results of the calculations. The
rhythms in boldface match the binarized rhythms in the books by Pérez Ferndndez. As can be seen, the NN
rule yields almost no match. Furthermore, its binarizations are of little interest in the sense that they keep
little perceptual resemblance to their ternary counterparts; see, for example, the binarization of the bembé
and compare itto [X..X..XX..X.X..X].

Ternary rhythm Name Binarized rhythm
XXXXX.X.X.X. Zamba-+Molossus X.X.X.X.X.X...X.
X.X.X..X.X.. 6/8 clave Son X.X...X...X.X
X.X.X..X.X.X | 6/8claveSon-var. 1 | Xx.X...X...X.X.X.
X.X.X..X.XX. | 6/8claveSon-var.2 | X.X...X...X.X.X.
X.X.XX.X.X.X Bembé X..X.X.X.X..X..X

Figure 7: Binarization of 12-pulse rhythms using the NN rule.

Ternary rhythm Name Binarized rhythm || Ternary thythm | Name | Binarized rhythm
XXXX.X Tribrach XX.XX..X XXX.XX Var. 2(c) XX.X.X.X
+Trochee
XXXXX. Zamba foot XX.XXX.. XXX XXX Var. 4(c) XX.XXX.X
X.XXX. Choriamb XX.XXX.. XXX..X Var. 6(c) XX.X...X
XXX.X. Var. 1(c)-1 XX.X.X.. X.X... Var. 5(a) XeoXoono
DX XL X, Var. 1(d)-1 LXLX L XL, X.XXXX Var. 4(a) X..XXX.X

Figure 8: Binarization of 6-pulse rthythms using the NN rule.

The table in Figure 9 shows the ternarization of the 8-pulse rhythms obtained with the NN rule. The
meaning of the columns from left to right is the following: original rhythm; its name; the snapped rhythm;
its name in case it is in our list of rhythms; the number of ties encountered; the list of rhythms with minimal
Hamming distance in the tie breaking rule, or the list of all rhythms given by ties that have overlapping
onsets; the contours of the ties and the contour of the original rhythm; the list of all rhythms generated by
ties with overlapping onsets; the contours of the ties and the contour of the original rhythm. Several matches
for the original binary rhythms are found. In this table the tie breaking procedure can be observed in detail.
For instance, variation 6(c) was ternarized in a unique manner since no ties arose. However, variation 1(c)-1
produced two ties, [x x X . x.] and [x X X . . x]. In the latter case we compare their rhythmic contours to
break the tie. The rhythmic contours are {0+ 0—} and {0+ —0}, respectively. For the ternary rhythm the
rhythmic contour turns out to be {— + —0}; therefore, the rhythmic contour of [x x x . x .] is more similar,
and [X x X . X .] is output as the ternarized rhythm. In the case of variation 1(d)-1, the rhythmic contour
cannot break the tie between the two snapped rhythms; note that both contours are made up of the same
symbols. Hence, the tie remains unresolved.



Bin. rhy | Mame |Tern. | Mame ternary |Ties|Min.Hamm.|Rhyt. Contour |Ons. Ov.|Rhyt. Contour Ov. |

xx.xx.X. | Milonga Infa  In/a 11 |xxxxx. |888+- , +-+8- |n/a In/a |
| | | | [xxxx.x  |08+-8 , +-+8- | | |

X..XX.X. |Habanera [P ed! 11 In/a Insa In/a Insa |

X.XX..X. |Varicl |xxx..x|Tern. Yaréc |2 |xxx.x. |8+48- , —-+-8  |x.x.x. |008 , -+-8 |
| | | | [%xx..%  |8+-8 , —+-8  |x.X..X |+=+ , —+-0 |

XXX X |Yarle2 Infa  In/a 1 Ixxx.x. |848- , ++—- Infa  In/a |
I [ | | |3, .x |8+-8 R | | [

LoXX. X, |Varddl Infa Insa 12 loocax. 48—, +—— |oox.x. |88 , +— |

| | | | |oxx..x  |+-8 , +— | |-+ 5 +—- |
WXaXa Xl |Vardd2 | oxx.x| 11 In/a In/a In/a In/a |
X.XX..XX |VarZe |xxx.xx|Tern. Var2c |2 |xxx.xx [8+-88 , —+-8+  |xxx..x [8+-8 , -+-8+ |

| | | | | | |%.x.xx |8-8+ , —+-B+ |
I l I | | | |%.%0uX 4=+ , —+-8+ |

XX.X.xxx |Yarde Infa  In/a 11 In/a In/a |xxx.xx |8+-08 , +8-000 |
| | | | | | |xxx.xx |@+-008 , +8-000 |

XXX ..X |Varéc |xxx..x|Tern. Yaréc |8 |n/a In/a In/a In/a |
XeaXaaao |Varsa [%.%...|Tern. YarSa |8 |n/a In/a In/a In/a |
X..Xxxx. |Varda |x.xxxx|Tern. Varda |1 [x.xxxx [-888+ , -88++  |xX.xxx. |-8+8 , -00++ |

Figure 9: Ternarization of 8-pulse rhythms using the NN rule.

Figures 10 and 11 display the binarizations given by the CN rule. For both 12-pulse and 6-pulse rhythms
many matches are found. For example, the bembé is transformed to its commonly accepted binarized form
[x..Xx..XX..X.X..x]. As mentioned in the preceding, this rule does not produce ties.

Ternary rhythm Name Binarized rhythm
XXXXX.X.X.X. Zamba-+Molossus X.XXX.X.X..X..X.
X.X.X..X.X.. 6/8 clave Son XeeXeoXoeooXoXouo
X.X.X..X.X.X | 6/8claveSon-var. 1 | X..X..X...X.X..X
X.X.X..X.XX. | 6/8claveSon-var. 2 | X..X..X...X.X.X.
X.X.XX.X.X.X Bembé X..X..XX..X.X..X

Figure 10: Binarization of 12-pulse rhythms using the CN rule.

The FN rule produced no matches in either the binarization or the ternarization. Interestingly enough,
there were no ties with binarization, but there were many with ternarization, in some cases as many as three.
Furthermore, in numerous cases the ties are unresolved (in the case of 16-pulse rhythms no output was
produced; all ties were unresolved). For the binarization, rhythms produced with the FN rule are somewhat
monotonous, in many cases consisting of rhythms with many consecutive eighth notes, and again they do
not reflect the perceptual structure of their counterparts. With respect to the CCN rule, the overall results are
better than those obtained for the CN rule. Ternarization worked very well; for example, the ternarization
of [X..X..XX..X.X..x]is the bembé. No match was obtained in the binarization, but the rhythms
produced are still interesting inasmuch as they maintain a perceptual resemblance with their counterparts.
However, there is a caveat here; CN and CCN rules do not give good results when transforming rhythms such
as [. x x . X .], since both rules produce rhythms with an onset on the first pulse. Obviously, this changes the
essence of the rhythm since it takes an upbeat to a downbeat.



Ternary rhythm Name Binarized rhythm || Ternary thythm | Name | Binarized rhythm

XXXX.X Tribrach+ X.XXX..X XXX.XX Var. 2(c) X.XX...X
Trochee

XXXXX. Zamba foot X.XXX.X. XXXXXX Var. 4(c) X.XXX.XX

X.XXX. Choriamb X..XX.X. XXX..X Var. 6(c) X.XX...X

XXX.X. Var. 1(c)-1 X.XX..X. X.X... Var. 5(a) X..X.

LXXLX. Var. 1(d)-1 .XX..X. X.XXXX Var. 4(a) X..XX.XX
Figure 11: Binarization of 6-pulse rhythms using the CN rule.

6.2 Centers of Rhythm Families
For the computation of centers of families of rhythms we used two distances, the Hamming distance and the
directed swap distance; and two types of centers, the min-sum and the min-max functions. Both binary and
ternary rhythms for all possible timespans of rhythms were included.
For binary rhythms of 8-pulses the results are summarized in Figure 12. We note that the rhythm
x .] is the center for all the distances and functions. The center for the directed swap distance
X .] may be considered as

[xx.x..
with the min-max function contains four rthythms. Therefore, rhythm [x x . x . .

the one most similar to the others.

’ Distance Function \ Value \ Rhythm \ Name ‘
Hamming Min-Sum 23 [xx.x..x.] | Bin. var. 1(c)-2
Hamming Min-Max 3 [xx.x..x.] | Bin. var. 1(c)-2

Directed swap | Min-Sum 24 [xx.x..x.] | Bin. var. 1(c)-2

Directed swap | Min-Max 4 [x..xx.x.] Habanera
[x.xx..x.] | Bin. var. 1(c)-1
[xx.x..x.] | Bin. var. 1(c)-2
[.x.x..x.] | Bin. var. 1(d)-2

Figure 12: Results for centers of the family of 8-pulse rhythms.

For the binary rhythms of 16 pulses we obtain the table shown in Figure 13. The clave son and its
variation [X..X..X...X.X.X. ] appear as centers in all cases. This is not surprising, since the set of
binary rhythms considered are rhythms based mainly on the clave son.

’ Distance Function ‘ Value ‘ Rhythm ‘ Name
Hamming Min-Sum 13 [X..Xx..X...X.X...] Bin. clave Son
[X..x..X X.X.Xx.] | Bin. clave Son-var. 1
Hamming Min-Max 6 [Xx..x..X...X.x.x.] | Bin. clave Son-var. 1
Directed swap | Min-Sum 12 [Xx..x..Xx X.X.X.] | Bin. clave Son-var. 1
Directed swap | Min-Max 4 [Xx..x..X...X.Xx.x.] | Bin. clave Son-var. 1
Figure 13: Results for centers of the family of 16-pulse rhythms.

Figure 14 displays the results for the ternary rhythms of 6 pulses. As with the binary case, there is a
rhythm that appears in all the centers, namely, variation 1(c)-1 [x X x . X .]. Again, this indicates that this
rhythm is the one most similar to the others.

Finally, the centers for ternary rhythms of length 12 are shown in Figure 15. The situation is very similar
to that of binary rhythms. The 6/8 clave son and its variation [x . X . X . . X . X X .] determine the entire set of
centers, the latter appearing in three centers out of four.



Distance Function ‘ Value ‘ Rhythm ‘ Name ‘

Hamming Min-Sum 19 [xxx.x.] | Var. 1(c)-1
Hamming Min-Max 3 [x x xxx.] | Zamba foot
[xxx.x.] | Var. 1(¢c)-1
[x x X . XX] Var. 2(c)

Directed swap | Min-Sum 18 [xxx.x.] | Var. 1(c)-1
Directed swap | Min-Max 3 [x.xxx.] | Choriamb
[xxx.x.] | Var. 1(c)-1
[.xx.x.] Var. 1(d)

Figure 14: Results for centers of the family of 6-pulse rhythms.

Distance Function \ Value \ Rhythm \ Name

Hamming Min-Sum 11 [X.Xx.X..X.X..] 6/8 clave Son

Hamming Min-Max 6 [x.x.x..x.xx.] | 6/8clave Son var. 2
Directed swap | Min-Sum 9 [x.x.x..x.xx.] | 6/8clave Son var. 2
Directed swap | Min-Max 4 [Xx.x.x..x.xx.] | 6/8 clave Son var. 2

Figure 15: Results for centers of the family of 12-pulse rhythms.

7 Concluding Remarks

In addition to some general conclusions, numerous specific conclusions may be drawn from the results of
these experiments, concerning the data, the snapping rules, and the centers.

Data: It would be desirable to have more documented examples of binarized rhythms. The 12-pulse rhythms
considered here are rather limited since they are almost all based on the 6/8 clave son. Figure 3 contains only
five rhythms, four of which consist of the 6/8 clave son and its variants. Since we are using its binarizations
as our set of binary rhythms, the situation repeats itself for the ternarization results.

Snapping rules: The snapping rules based on nearest (NN) and furthest (FN) neighbours appear not to work
very well. In particular, the behaviour of the NN rule is surprizing. One would expect this rule to respect the
perceptual structure of the original rhythm, but this is not the case, at least when it is applied to the entire
rhythmic pattern. More experiments applying both rules at the metric foot level should be carried out. Rules
based on snapping in a preferred direction, such as CN and CCN, work better than NN and FN. Curiously,
CN works much better for binarization than for ternarization. On the other hand CCN performs better for
ternarization.

Centers: As a consequence of the small size of the sets of 12- and 16-pulse rhythms, the results for the
families of rhythms are poor in general. Centers computed on the families of 6- and 8-pulse rhythms are
more meaningful. It would appear that perhaps a certain critical number of rhythms is necessary for the
centers to make musical sense in the context of binarization and ternarization. Interestingly enough, on the
whole, the computation of the centers yields large families of rhythms that are musicologically interesting
on their own. Thus centers provide a nice tool for generating new rhythms that are similar to a given group,
and can be used as composition tools as well as automatic rhythmic modulation rules. The entire collection
is not listed here for lack of space, but it can be found on the web [8].

General conclusions: The results of these experiments are encouraging and suggest several avenues for
further research towards our goals, which are the automatic generation of new rhythms as a composition
tool, the possible testing of evolutionary theories of rhythm mutation via migration, the understanding of
perceptual rhythm similarity judgements, and the development of a general computational theory of rhythm.
In this preliminary study we only considered snapping rules on the entire rhythmic patterns. The next step is
to repeat these experiments at the finer level of the metric feet contained in rhythmic patterns. The families
of rhythms considered in this study are rather small since they consist of the documented examples of bina-



rizations found in the literature. It would be very useful for comparison purposes to repeat these experiments
using all known binary and ternary rhythms used in world music to discover which other binary-ternary pairs
are identified by the snapping rules investigated here. Finally, mapping rules that use higher level musicolog-
ical knowledge should be designed and compared to the context-free snapping rules used here, to determine
how relevant such high level knowledge might be.
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