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Abstract 
 

In this paper we describe procedures for turning any random non-planar hexagon into five radically different 
sculptures that are mathematically interesting and esthetically pleasing. In each situation, we start by sketching a 
planar hexagon with relatively nice symmetries – noting that a regular hexagon is far too restrictive. We then 
describe a method for turning this sketch into a sequence of linear steps which, when applied to any non-planar 
hexagon will construct an affine image of our sketch. Since the resulting hexagon is affine, this process is 
mathematically interesting because it planarizes our non-planar hexagon. By adding motion to the hexagon that we 
sketch, we can add the sense of motion to the sculpture. This added motion provides unexpected results which can 
turn our sculptures into art. 

 
 

 
1. Background: Symmetric Linear Constructions 

 
If the five vertices of any irregular non-planar pentagon slide down 
their respective median line at speeds proportional to the length of 
their respective line segment, then at a certain moment in time, 
these five points have folded themselves up and flattened out to 
form a stellar planar affine regular pentagon. As these points 
continue sliding, they unfold, and flatten out once again to form a 
non-stellar planar affine regular pentagon. With the exception of a 
few degenerate cases, affine regular polygons appear regular when 
viewed from a certain direction. A sculpture, shown to the right, 
visually shows this transformation of random non-planar polygons 
into planar affine regular polygons. This sculpture puts into motion 
a theorem of Jesse Douglas [5] from 1960. 
 
This example begs the question: What other constructions planarize random polygons and which of these 
can be used to produce artistically interesting sculptures? 
 
Before considering the artistic aspect of the above question, we must consider the mathematical aspect. 
To clarify the question: Starting from a random non-planar n-gon, describe a sequence of steps consisting 
of constructing line segments between pairs of known points followed by locating a new point on this line 
at a specified ratio of this length. At the completion of these steps, label the last point constructed q1. 
Likewise, describe a sequence of linear steps for constructing the remaining vertices of the polygon. 
Connect the vertices in order to form a new n-gon. We shall call this a linear construction. Thus, our first 
goal is to determine linear constructions which produce planar polygons when applied to any random n-
gon, for a fixed known value of n. The most familiar linear construction is the midpoint rule for 
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quadrilaterals which planarizes quadrilaterals by producing parallelograms. In [5], Jesse Douglas locates 
specific points on the median lines of pentagons which planarize pentagons. He also observed that his 
process always produces a pentagon which is as regular as possible in the sense that it is affine regular. A 
polygon is affine regular if it is the image of a regular, either stellar or convex, polygon under a linear 
transformation. Notice that parallelograms are affine regular.  
 
We shall call a linear construction symmetric if the construction generates 
each vertex by repeating the same sequence of steps from different 
vantage points. Notice that the two examples listed above are indeed 
symmetric. In [1], the author proved that a symmetric linear construction 
planarizes if and only if it produces affine images of regular polygons. 
Moreover, as we shall see below, there is a procedure for designing these 
constructions for polygons of any size. For example, the distances in 
Figure 1.2 can be used to construct one portion of Jesse Douglas’s 
construction. Thus, for symmetric linear 
constructions, the mathematical aspect has been 
completely answered.  
 
This leaves the artistic aspect: How do we apply 
the mathematical constructions in an interesting 
way to design pleasing sculptures? In [2], [3], 
and [4], the author has used symmetric linear 
constructions to describe and produce a variety 
of (computer generated) sculptures. Figure 1.3 
shows a wood and brass sculpture created by the 
author using this technique. This sculpture was 
shown at the Bridges Conference Art Exhibit in 
London in 2006. In this paper, we wish to focus 
on hexagons. Applying the theorem stated above 

to a 
random 
hexagon produces the sculpture shown in Figure 1.4. Notice that 
the sculptures in Figures 1.1 and 1.3 not only incorporate two 
different planar pentagons, but they also both incorporate stellar 
affine regular pentagons. Since regular hexagons only come in 
one form, we can not obtain either of these two characteristics 
when applying symmetric linear constructs to hexagons. 
 
As we shall see in this paper, removing the symmetry restriction 
greatly expands the possibilities both from the mathematical 
aspect and from the artistic aspect. 
 

 
2. Designing Linear Constructions which Planarize Hexagons 

 
It turns out to be surprisingly straightforward to create a mathematical formula which can be used to 
construct a sequence of steps which planarizes a polygon. Before considering the non-symmetric case, we 
shall consider the symmetric case. By the theorem stated above, this must create an affine regular 
hexagon. Start by drawing a regular hexagon and label the points in order. Then, as shown in Figure 2.1, 
draw a dashed line anywhere and measure, using any choice of units, the distance between each point and 
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the line. For simplicity, we shall place our line along an edge. These 
distances describe the relative weights necessary for constructing the planar 
affine regular hexagon. Normalize these weights {1,2,2,1,0,0} so that they 
sum to 1 and use these as a weighted average of the vertices  p1, p2, p3, p4, 
p5, and p6 of the random hexagon. Thus, the first point must be located at 
(1/6)p1+(1/3)p2+(1/3)p3+(1/6)p4. Notice that this equals 2

3
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Recall that 2/3A + 1/3B locates a point 
on the line segment AB which is 1/3 of 
the distance from A towards B. This is 
closer to A than to B because A has a heavier weight. The hexagon 
weights can be interpreted as: “Construct new points 1/3 of the way 
from the midpoint of each side to the midpoint of the corresponding 
diagonal”. We can see this in 
Figure 2.2. In this sculpture the 
vertices of hexagons slide from 
the midpoint of each side to 
their critical locations. 
 

We now modify this for non-symmetric linear constructions. Start by 
drawing any desired polygon and label the vertices in order. We 
shall first consider the hexagon shown in Figure 2.3. Draw the line 
passing through vertices 1 and 2 and measure the distances to get 
{0,0,r,1,1,r}. Next, draw the line passing through vertices 2 and 3 
and measure the distances to get {1-r,0,0,1-r,1,1}. Continue this process for all six sides. We now 
construct a matrix using these distances as the column vectors as shown in Figure 2.4. To planarize, it is 
critical that every row of this matrix must have the same non-zero sum. After 
dividing by this sum, the rows become the weights for our construction. 
Specifically, if p1, p2, p3, p4, p5, and p6  are the vertices of our original polygon, 
then we get the locations q1, q2, q3, q4, q5, and q6 of the new polarized polygon 
by multiplying our matrix times the column vector consisting of p1, p2, p3, p4, 
p5, and p6  as shown in Figure 2.5.  Notice, that if r = 1/2, then we have the 
symmetric construction described above. For r = 1/3, the first row can be 
written as q1 =

2
3
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⎟ . Notice that, ignoring horizontal translation of 

each row in the matrix, the odd rows contain the sequence {1-r,1,1,r} 
and the even rows contain the sequence {r,1,1,1-r}. This is not 
surprising since the sequences of distances alternate between the odd 
sides and then even sides in Figure 2.3. 
 
 

3. Designing a “Wacky Triangular Basket with a Pedestal” Sculpture 
 
To make an artistically interesting sculpture we shall use the ideas above to construct a sequence of planar 
hexagons. The following sculpture will construct a sequence of hexagons using the method above for 
values of r between -2 and 3. It turns out that for all of the sculptures considered in this paper, instead of 
constructing each planar polygon independently for each value of r, it suffices to construct planar 
hexagons for only two values of r and then to connect these planar hexagons with “sliding lines” between 
the corresponding vertices. The vertices of the remaining planar hexagons are located on these sliding 
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lines. To keep the initial two hexagons as simple as possible, we 
shall use r = 0 and r = 1. For r = 1, the matrix from the previous 
section instructs us to average three successive vertices. By 
breaking the triplet into pairs we have 
q1 =

p3 + p4 + p5

3
=

2
3

p3 + p4

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

1
3

p5
. This says that for the odd sides 

we need to connect the midpoint of a side to the point a third of 
the way towards the next vertex. For the even sides we also 
average a triple, but this time we connect the midpoint of the 
side to the point a third of the way towards the previous vertex. 
Since this constructs the same point q1 = q2 and we end up with 
a triangle. The original hexagon in Figure 3.1 is the outside bold 
zigzagging hexagon. Applying this procedure creates the six 
thin lines and the triangle on the bottom half of the figure. The 
case r=0 switches evens and odds and creates the six thin lines and the triangle on the top half of the 
figure. Notice that the first procedure merges q1 and q2 whereas the second procedure merges q1 and q6.  
 
Next we connect the top q1  to the bottom q1 to create “sliding line 1” as 
shown. Likewise we create five more sliding lines. As we side, at r=½ 
we have constructed the hexagon half way along these 
sliding lines, as shown in Figure 3.2. This is the affine 
regular hexagon discussed at the beginning of section 
two.  For r = 1/3 we slide a third of the way to produce 
an affine regular image of the non-regular hexagon 
shown in Figure 2.3. For our sculpture, we shall stretch 
each sliding line to five times its length and center the 
extended line on the original line segments, as shown 
in Figure 3.3. This figure also shows the shape of the 
hexagon as it slides upward two steps and downward 
two steps. While initially not obvious, we can check that these six 
hexagons correspond to the values r = -2, -1, 0, 1, 2, and 3. Applying 
this process for 36 values of r between -2 and 3 to the random hexagon 

shown in Figure 3.4 we 
obtain the computer 
generated sculpture in 
Figure 3.5 titled “Wacky 
Triangular Basket with a 
Pedestal.” Because this 
process is designed to 
produce affine images of 
the hexagon in Figure 
2.3 for values of r 
between -2 and 3, this 

particular construction will produce an image 
similar to that shown in Figure 3.5 regardless of the 
initial random hexagon chosen in Figure 3.4. On 
the other hand, there was nothing about the process 
to expect the resulting planar hexagons to end up 
being parallel. In the remaining sculptures we shall 
see situations where the planar hexagons do not end 
up parallel. 

Figure 3.2

Figure 3.3

Figure 3.5: 
“Wacky Triangular Basket with a Pedestal”  
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4. Designing “Sailing” 
 
Our next sculpture is based upon pinwheel hexagons. Figure 4.1 shows both a 
small dark pinwheel hexagon and a large light pinwheel hexagon. It also 
shows how we can slide the vertices 1, 3, and 5 continuously between these 
two pinwheels while leaving the even vertices fixed. Observe that the light 
and the dark pinwheels “turn” in opposite directions. That is, once we adjust 
for size, they are mirror images across a horizontal line of reflection. As 
before, we start with a random hexagon and then construct affine images of 
the two pinwheel hexagons shown in Figure 4.1. We attach “sliding lines” 
between corresponding vertices of these two pinwheel hexagons. And then we 
construct a sequence of hexagons 
between these to give us a sense of 
motion as these transform from one 
pinwheel to the other.  
 
The first pinwheel, the smaller version 
from Figure 4.1, is shown in Figure 
4.2. The first column of our matrix 
consist of the distances {0,0,1,0,1,2} 
from each vertex to the dashed line 
through vertices 1 and 2. In Figure 4.3 
we see that the line through vertices 2 and 3 cuts through the polygon and so we 
must denote one side positive and the other side negative. Although the final 
construction will be different depending upon this choice, they will both have 
the desired affine image of our pinwheel. By denoting distances above the line 
as negative column 2 becomes {1,0,0,2,-1,-2}. Because of the even and odd 
symmetry of our pinwheel, the remaining columns will be similar. These 
distances form the matrix shown in Figure 4.4. As a final step, each row must 
sum to the same non-zero value which we must then divide out.  
 
Let us now apply this matrix to the random hexagon in 3-space shown in Figure 4.5. 
From our matrix, row six tells us that vertex q6 of our pinwheel hexagon must be 
located at 421 ppp +− . By rearranging, this is equivalent to 

2
41 1

2
2 p

pp
−⎟

⎠
⎞

⎜
⎝
⎛ + . Thus, as 

shown in Figure 4.6, we first construct 
the midpoint m14 between points p1 and 
p4. Letting d denote the distance from p2 
to m14, we next construct a line segment 
of length 2d and place this as shown in 
Figure 4.6. Thus, point q6 is located at 
distance d from m14 located in the 
opposite direction from p2. The remaining 
evens are constructed in a similar fashion.  
 
From our matrix, our first row tells us 
that vertex q1 of our pinwheel hexagon 
must be located at 

5432 2
1

2
1

2
1

2
1 pppp +−+  

which can be written as 
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Figure 4.12 
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= . Notice the consistency between Figure 4.2 

and Figures 4.6 and 4.7. That is, q6, and hence all the evens, are located 
on the “tips” of the pinwheel, and q1, and the odds, are located on the 
“elbows” of the pinwheel. The complete set of lines used to construct 
this first pinwheel is shown in Figure 4.8. 
 
Returning back to Figure 4.1 we now wish to construct a pinwheel 
similar to the larger pinwheel. This time, just to be different, we double 
the units for the odd columns, as shown in Figure 4.9, but do not 
double the units for the even columns, as shown in Figure 4.10. (If we 
doubled both, then this doubling would be divided out when we 
average each row vector.) Comparing the distances from Figure 4.2, 
{0,0,1,0,1,2}, to the distances in Figure 4.10 {0,0,4,2,0,2} we notice 

that the difference in orientation of the two pinwheels is 
reflected in the column vector. The matrix generated by 
Figures 4.9 and 4.10 is shown in Figure 4.11. When we 
apply this matrix to the same random hexagon as shown 

above, we obtain the pinwheel shown in Figure 
4.12. This figure also shows the construction 

lines used to construct q3 and q4. We leave 
the details to the reader with only a hint that 

the far bottom right ball is located by 
moving from vertex 6 towards vertex 1 
and then going beyond an equal 
distance.  

 
Putting together both pinwheels 

and adding a collection of 
hexagons for values of r 

between the corresponding 
vertices produces the 

sculpture titled 
“Sailing” shown in   
Figure 4.13. 
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5. A Triple of Stellar Hexagon Sculptures 
 
Our final three sculptures are 
based upon the stellar hexagon 
formed by the dark lines in 
Figure 5.1. As before, we add 
variety by having this hexagon 
transform shape by having the 
odd vertices slide in and out. We 
shall let t denote the distance 
between the edge of the dotted 
triangle and the odd vertices and 
we shall set the height of the 
dotted triangle 
equal to 1. Two 
very simple 
values for t are 
t=1 and t=0 as 
shown in Figures 
5.2 and 5.3, 
respectively. We 
generate matrices 
similar to the above examples. To 
construct the odd vertices of the 
hexagon shown in Figure 5.2 we find 
the midpoint of the sides starting with 
odd vertices. For the even vertices we 
find the average of four successive 

vertices, which we can construct by finding the midpoint between two 
pairs of midpoints. Figure 5.4 shows a random hexagon with these two 
“hexagons” constructed. Notice that, as triangles, Figure 5.2 has odd 
vertices and even midpoints, while Figure 5.3 has even vertices and odd 
midpoints. Thus, when we connect corresponding vertices of the two 
hexagons in Figure 5.4, midpoints of the triangles are connected with 
vertices of the other triangle. Figure 5.4 also shows the sliding lines 
from Triangle A to Triangle B. Notice that all sliding lines start at 
Triangle A and go to and beyond Triangle B. Figure 5.5 shows the 
hexagon generated for the value, of t = 3, which generates an affine 
image of a stellar hexagon of the 
type shown in Figure 5.1. Notice 
that this image is at the end of the 

sliding lines and that the edges moved in slightly from Triangle B 
whereas the vertices moved out considerably from this same 
Triangle. This explains why the sliding lines shown in Figure 5.4 
are not the same relative length for the odds as for the evens. Figure 
5.6 shows a sculpture designed by sliding Triangle A towards 
Triangle B and beyond to t = 3.  
 
We now consider the interesting case when t < –1. This moves the 
top vertex, point 5, in Figure 5.1 down below the central triangle 
forming the stellar hexagon shown in Figure 5.7. Applying the 
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procedures, as 
described above, to 
a random hexagon 
produces the affine 
image shown in 
Figure 5.8 and 
applying t for 
values between t = 
–1 and t =  –3 
generates the 
sculpture shown in 

Figure 5.9. Figure 5.10 shows a 
sculpture for values between t = 
– ½ and t =  –3. While this seems 
to show that our “sliding lines” 
turn a corner, they in fact stay 
straight. Rather, by looking at 
Figure 5.1 we note that for t = –1, 
the hexagon folds up into a 
triangle traveled twice. This 
process causes the pairs of sliding 
lines in Figure 5.10 to cross. 
 

 
Summary 

 
The freedom released by expanding from symmetric linear constructions to non-symmetrical linear 
constructions vastly expands the potential for interesting sculptures. Rather than merely picking among 
the rather limited choices of regular polygons, we now have the almost unlimited possibility from non-
regular polygons. By creating a transformation from one polygon to another, applying the processes 
above of measuring distances, creating a matrix and constructing a sequence of linear steps, many 
surprising and wonderful sculptures can arise. 
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