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I label myself as neither mathematician nor artist, preferring to place myself on the periphery of many sub-
jects. The advantages of cross-discipline communication are becoming better understood and appreciated,
and braiding is an ideal medium for traversing into different realms. It is an ancient technique that can be
found in many forms, all over the world. Its chameleon-like ability means it can be found in seemingly
diverse spheres: from fashion to warfare, surgery to mechanics, and sports to cuisine. It can, quite literally,
include the kitchen sink (with its braided metal pipes). It can be incorporated into the study of disparate
disciplines: from maths to art, history to religion, and anthropology to physics. However, in order to bring
these worlds together, common ground and more importantly, a common language must be found. Even a
simple concept cannot be understood if it is explained in a foreign language. So in order to bridge the gap
between disciplines, there is a need to find new ways of communicating. Not only will this give access to
new territory, but also the actual search for a new language can widen and enrich our understanding of
areas of specialization.

Finding a format.

It was the issue of language that led to the search for a visual way of representing braid structure. A quest
to find a simple method that would enable braids to be analysed and compared, and new structures discov-
ered. The problem was finding a format that was universal for all braids. Carey [1] established a grid sys-
tem that provides a means of working out all of the pattern possibilities on one braid structure . Now the
challenge was to find a way to calculate all possible braid structures.

Flat braids are easy to represent, although problems in uniformity can be found, even with some
basic, well-known braids (see figure 1). Three-dimensional structures presented more complex problems.
Ashley [2] uses a simple cross-section to give a sense of the braid structure (see figure 2). Speiser [3] takes
this a step further with her track plans. Although these are intended as a visual representation of technique
(the method of creating) rather than structure (the finished result), they do offer a certain sense of the type
of braid being produced. However, once again, uniformity is a problem, because track plans cannot be
made for all braids. 
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As a braidmaker, my work encompasses both maths and art. However, language can be a bridge, or a barrier,
between different disciplines and without a 'mathematical language' it has been difficult for me to access work
done in this field. This paper describes my search for a visual language that provides me with a practical and
theoretical way of comparing and analysing braid structure. From this comes the means of discovering all
possible braid structures for a set of given constraints. Although braids have been made for millennia, they
tend to be limited to certain types of structure. These have usually evolved from the characteristics found
within the methods of production. Approaching the subject from a mathematical viewpoint, enables me to find
new structures from the wealth of possibilities that have yet to be explored.
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There are also inherent problems in attempting to look at braid possibilities through technique.
There are many different ways of making braids, such as plaiting, loop-manipulation, and stand and bobbin
techniques, such as kumihimo. These various methods can be used to create identical structures. It is even
possible to make the same braid structure using a variation within the same technique. This has caused a
certain amount of confusion as can be seen in Owen [4]. Here, two routes are used to create two braids.
One braid is described as square, whilst the other is said to be round, when in fact, they are both identical.
Basically, there are many ways to arrive at one particular structure. Each method has idiosyncratic features
that may effect the visual outcome but the underlying structure remains the same. This is best illustrated
with a comparison to plain weave - the ‘under one, over one’ structure that is common to many fabrics. It
can be warp-faced, weft-faced, or even-weave, but always maintains the ‘under one, over one’ structure
(see figure 3).

Figure 3: Even weave, weft-faced and warp-faced are all plain weave structures.

Figure 2: A simple 4-element tubular braid represented in the style
of Ashley (left) and Speiser (right).

Figure 1: Three different flat braids: an ‘oblique interlacing’ (left), 
a ‘zigzag interlacing’ (centre), and a ‘triaxle interlacing’ (right).
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The basic rules

The diagrams are generated on squared paper worked at a 45-degree angle. But, before we begin, it is worth
clarifying some of the terms used in the explanation. In this context, element refers to one of the working
units from which the braid is made (for example, the common hair plait is a 3-element braid). The diagram
is the visual representation of the braid, whilst the grid and lines refer to the squared paper on which it is
drawn. The point at which the lines on the grid meet will be called an intersection.

The braid diagram must follow the lines on the squared paper, with one element travelling along
each line. The number of braid elements determines the width of the diagram. So, if the number of ele-
ments is known, boundaries can be drawn vertically on the grid. For example, a 6-element braid will use
six lines and have the following boundaries.

Figure 4: An example of ‘double cloth’. 
This particular version will form a tubular plain weave structure.

In fact, it was by making a comparison to weaving, that a breakthrough was made. The drafting of
weave patterns can be done on squared paper, and there is a magical moment when the drafting results not
in a flat single cloth, but in a ‘double cloth’ (see figure 4). These simple 3-dimensional structures consists
of two interconnected layers of weaving. The drafting ‘flattens’ the structure with each layer represented
by alternate rows of interlacing. The same idea could be applied to braids. By following the basic rules of
drawing flat braids on squared paper, the 3-dimensional aspects could be incorporated by elongating the
braid structure so that the different layers became integrated in adjacent rows. The final problems were
resolved with the addition of a ‘no-intersection’, which made the system work for all braid structures.
Although it is difficult to visualize the more complex braids, the fact that they can be reduced to a simple
three-digit code provides a useful tool for theoretic discovery.  

Width determined by the
number of elements

Figure 5: Diagram showing the boundaries for a 6-element braid.
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At each point where the grid lines meet, the elements will intersect, with one element arriving from the top
left-hand side, and the other from the top right-hand side. After they intersect one element will travel down
to the bottom left-hand side, and the other to the bottom right-hand side. 

Figure 6: Elements arriving and departing from an intersection.

There are three types of intersection (referred to as S, Z and O). Either the top left-hand side element goes
over the top right-hand side element (making an S intersection) or vice versa (making a Z intersection).
The third option (O) is for neither element to cross, they simply meet, turn and travel downward.  

Figure 7: Three types of intersection: S, Z, and O.

The braid elements work their way obliquely down the grid, following the lines and making intersection as
they go. Whenever an element reaches a boundary, it turns 90 degrees back into the diagram, as if making
half an O intersection. 

The width of the diagram determines the number of elements in the braid, whilst the length/depth
of the diagram shows the intersections required to make the braid structure. The rows of intersections have
to work in pairs, referred to as a set of intersections.The braid is formed when these sets are repeated. Note
that if a turn at the boundary is considered half an intersection, then the number of intersections in a set
will always equal the number of elements. 

1
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5

A set of intersections {

Figure 8: For a 6-element braid, there are six intersections in the set -
five complete ones, and two halves at the boundaries. 

Using these rules, it is now possible to diagrammatically illustrate all known braid structures. They can also
be written in a verbal language by translating the information into a simple code based on the three letters
S, Z and O. Here, each letter describes the intersections in a set, reading from left to right. Note that as the
half intersections at the boundaries are not included, the set is written as a group of letters that is one less
than the number of elements in the braid. The diagram, or its code, can now be used to discover all of the
outcomes for given constraints. For example, there are nine possible outcomes for three elements, working
repeats after one set of intersections (see figure 9).
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{
Three elements

Repeat after
one set

SS SZ SO

ZZ ZS ZO OO OS OZ

Figure 9: The constraints and the nine outcomes.

However, not all of the outcomes shown in figure 9 actually produce a braid - and here we enter the rather
contentious issue of what actual constitutes a braid. None the less, it has ensured that all options have been
considered, and that no solution is left undiscovered. Of course, the process can be simplified through elim-
ination. For example, all pairs of diagrams that have rotational symmetry of 180 degrees are, by their
nature, the same braid viewed upside down. So the examples in figure 9 can now be narrowed down to six
solutions. For those who like a full analysis, these are the precise results: 
SS = a 3-ply, S-twist cord
SZ = ZS = the common 3-element braid.
SO = OO = a 2-ply, S-twist cord and a single element.
ZZ = a 3-ply, Z-twist cord.
ZO = OZ = a 2-ply, Z-twist cord and a single element.
OO = three single straight elements.
Of course, expanding the constraints could increase these results: either by increasing the width of the 
diagram (for example to four elements), or by increasing the depth of the repeat (for example 3-elements
working repeats after two sets of intersections).

Figure 10: Two different sets of constraints.

{
{

Three elements

Repeat after
two sets{

Four elements

Repeat after
one set
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As the complexity increases, so does the need for refining the search for ‘same solutions’. This is inevitable
as braid sequences can be repeated from any point, and  3-dimensional structures can be ‘flattened’ from
any face. Unfortunately, the ‘flattening’ can make it difficult to visualize some of the structures, especially
the more complex ones. However, the fact that all braids can be ‘translated’ into the same format provides
a useful tool for comparing and analysing braids. Furthermore, patterns of behaviour within the diagram,
or code, can be studied and compared with actual braid samples. This provides a fascinating realm for
research and material for further development. 

Figure 11: The three braids, shown in figures 1, can now be represented in the same format.

SOO
SZO
SZS
SZS
OOS
OZS
SZS
SZS

ZSZ
SZSSOO
SOZSSZ
OZSZSZ

SZS
ZSZ

Figure 12: 3-dimensional braids, such as the one shown in figure 2, can also be represented
in the same manner. 

Beyond the basics

Ultimately, this ‘language’ is just a tool for understanding and exploring the underlying construction of
braid structures. Braid design takes on a whole new meaning when areas such as scale, material, colour and
tension are explored. All of these need to be considered and understood if they are to be manipulated with
control. However, the real mystery and challenge is to assimilate this with other disciplines, creating a sen-
sual and intellectual union - to find a beauty that combines both underlying and outward aesthetics, quite
literally, interlacing all aspects together in harmony.
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Figure 13: The diagram and code for more complex braids. Left: a known braid that has been difficult
to represent (top photograph). Right: a ‘newly discovered’ structure (bottom photograph).

SSSSSSS
OOZZZOO
SOOZOOS
OZZSZZO
ZZZSZZZ
OOZZZOO
SOOZOOS
OSZSZSO

ZSOOZOO
OOSZOOO
OOOOZZO
OOSOOZS
OOOSZOO
OSSOOOO
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Figure 14: A range of different braid structures that can now be designed and analysed using the code
and diagrams.

Figure 14: A range of different patterns created on the same braid structure.These can be designed and
analysed using the ‘grid’ system (Carey 1994).
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