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Abstract

In this survey paper, I describe three applications of tilings to music theory: the representation of tuning systems
and chord relationships by lattices, modeling voice leading by tilings ofn-dimensional space, and the classification
of rhythmic tiling canons, which are essentially one-dimensional tilings.

1. Introduction
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Figure 1:Musical tilings.

Figure 1 shows three “musical tilings”: from left, a piano keyboard, a chromatic accordion keyboard, and a
notation of the Egyptianraqs sa’idi rhythm [18]. Although, at least on the surface, it may not be clear that
the tilings are related to each other, or indeed have any musical significance, in fact each example reveals
deeper symmetries present in music, both in the domains of pitch and rhythm. These symmetries and their
relationship to tilings are the subject of this article.

A tiling is a partition1 of some space into congruent pieces, called tiles. There are many ways, both
periodic and aperiodic, to tile the plane and higher-dimensional space. One-dimensional tilings, though
less well known, are partitions of the real line into congruent collections ofintervals. Tilings have long
been of interest to visual artists and mathematicians alike. In addition, music theorists and mathematicians
(going back to Euler) have discovered connections between tilings and musical structures. In this survey
paper, I describe three applications of tilings to music theory: the representation of tuning systems and chord
relationships by lattices, modeling voice leading by tilings ofn-dimensional space, and the classification of
rhythmic tiling canons, which are essentially one-dimensional tilings.

2. Euler and the Tonnetz

There are many ways to construct a scale. Solving the one-dimensional wave equation, which describes the
behavior of string and wind instruments, produces a sequence of sinusoidal functions whose frequencies are
the positive integer multiples of some constant. The scale is based on rationally related frequencies (octaves
(2:1), fifths (3:2), and so on) or approximations to these frequencies. One approach builds upon a selection
of the first few ratios among terms in the sequence. Fifths and octaves generate the Pythagorean scale; we

1Tiles are allowed to intersect in a set of measure zero—for example, tiles intwo-dimensional space are allowed to share an
edge, but not a two-dimensional area.
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multiply the starting frequency by integer powers of two and three (including negative integer powers) to
produce elements of the scale.2 An alternate technique, an example ofjust intonation, is to generate a scale
with fifths and major thirds (5:4). Although he did not originate just intonation, Euler [9] was the first to
represent it as an infinite lattice, a portion of which appears in Figure 2 (left). Read left to right, rows are
sequences of perfect fifths, and columns are sequences of perfect major thirds, read top to bottom—therefore,
the lower left to upper right diagonals of the squares are perfect minor thirds (6:5). Since sequences of
either fifths or thirds are geometric, we see that this lattice is drawn on a logarithmic scale. A similar lattice
appeared in the late nineteenth century works of Oettingen [24] and Riemann3 [25]. Riemann’s lattice, called
the tonnetz, depicts the major and minor third relationship more explicitly (Figure 2, center).4 Since each
triangle in the tonnetz represents a major or minor triad, vertices in its dual hexagonal lattice correspond
to triads, and edges connect triads that have two notes in common. Figure 2 (right) labels the triads (“A”
indicates A major and “am” indicates A minor), with major triads shaded.
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Figure 2:Euler’s Speculum Musicum [9, p. 350], Hugo Riemann’s Tonnetz [25], and the tonnetz lattice with
its dual.

It is tempting to classify Figure 2 (right) as the tiling p3m1,5 but one should be careful about what
is actually represented. The symmetries of this lattice are transpositions by fifths, major thirds, or minor
thirds (geometrically, translations along the lines of the lattice), so the tiling is p1, as is Euler’s lattice.
The fundamental region is a small rhombus. Inversion in the fifth, which exchanges major and minor
thirds, introduces horizontal reflections, giving the tiling pm. The dual lattice, consisting of hexagons whose
vertices are labeled by the alternating major and minor triads in Figure 2 (right),is p3m1 if we ignore
everything except chord quality. Although this was not the original intention, the tonnetz can also represent
notes in equal temperament. In this case, we have additional symmetries: enharmonic equivalence (for
example, E♭ and D♯ share the same frequency), and, because twelve fifths equal seven octaves, octave
equivalence. Using these two symmetries instead of transpositions by fifths and thirds gives a different p1
tiling whose fundamental region contains exactly one copy of each note in thetwelve-tone scale.

3. Voice Leading and Continuous Transformations

We can describe relationships between chords in many ways—the circle of fifths is just the best-known
example. If a sequence of chords is played by several voices, each sounding a single note, we can track the
motion of individual voices in the progression from one chord to the next. This association is calledvoice
leading. Although the conventions of voice leading have changed through the ages, some common principles
persist. When leading between two chords, it is desirable that each voice move as short a distance (in pitch6)

2Note that the octave will not “close up” in the familiar circle of fifths. That is,if we start with 440 Hz, no matter how many
multiples we generate, this process never returns 440 Hz again. What is produced by repeating this method an infinite number of
times is not the circle of fifths, which occurs only in equal temperament, but a dense subset of all frequencies.

3Hugo Riemann, not to be confused with the mathematician Bernhard Riemann.
4Interestingly, the tonnetz array forms the keyboard layout of a concertina patented in 1844 by the English physicist Wheat-

stone [17]. His instrument appears to be designed for equal temperament—though not all concertinas were—and he may have been
motivated by the chord possibilities in the dual lattice. However, I have found no evidence that Wheatstone built this instrument, or
that he had a role in the development of the tonnetz on the Continent.

5For an introduction to plane tilings, seehttp://en.wikipedia.org/wiki/Wallpaper_group .
6Pitch is determined by the logarithm of frequency—precisely, if we arbitrarily decide that middle C is 0, then 440 Hz (the A

above middle C) corresponds to note 9, and pitch= 9 + 12 log
2
(frequency/440). In this system, integers correspond to notes in

the chromatic scale of twelve-tone equal temperament.
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as possible. In order to achieve this, voice-crossing—occurring whentwo voices change positions in the
ordering of voices from low to high—is avoided. If we restrict ourselvesto twelve-tone equal temperament,
the closest distinct chords are those that differ by a semitone in one voice only (note that the chords in the
dual tonnetz differ by either one or two semitones in one voice). This notion of closeness gives a structure
to the space of chords ofn voices. In fact, if we consider a “chord” to be anorderedmultiset7 of integer
pitches, with each coordinate representing the pitch in one of the voices, wecan mapn-voice chords to the
latticeZ

n. The closest distinct chords are those that differ by one semitone in exactly one voice.

Our perception (and musical practice) gives this lattice ofn-voice chords many symmetries: if two voices
exchange pitches, if one voice shifts by an octave, or if all voices shift by the same amount, the respective
resulting chords will sound quite similar to the original. How can we model voice leading in a way that re-
spects these relationships? Quite a few music theorists have described voiceleading using lattices or graphs:
see Roeder [26], Douthett and Steinbach [8], Straus [27], Cohn [5], and Tymoczko [30]. The innovation that
Callender [3], Quinn, and Tymoczko [29, 28] (henceforth, CQT) introduced is to embed the lattice ofn-
voice chords intocontinuousn-dimensional space (since pitch is continuous, not discrete) and study the
effects of musically relevant symmetries. If we identify points inR

n that represent “similar” chords, what
shape is the resulting space? Of course, the answer depends on which similarities we consider. CQT de-
scribe families ofchord spaces, all of which are quotients ofRn under various isometries or combinations
of isometries. Many discrete models of voice-leadings relationships embed nicely into these spaces. We
will consider an example that Callender develops in detail in [3], and then touch on its relationship to CQT’s
general construction of chord spaces.

3.1. Representation inR
n. In the discussion that follows, an “n-voice chord” means a vector inRn.

We now represent operations on chords as rigid transformations ofR
n: transposition moves each voice

by k pitches; permutation exchanges the pitches in two voices; octave shift movesone voice by some
integer number of octaves; and inversion sends each voice to its additive inverse. Each of these operations
describes a musical similarity of some sort. For example, all major triads in root position are equivalent
under transposition. We call the set of vectors equivalent tov under all combinations of the four operations
themultiset classof v.

Usingei to representith standard basis vector ofR
n, 1 to represent〈1, 1, . . . , 1〉, andPij to represent

the exchange of pitches in voicesi andj given byPij : 〈. . . , vi, . . . , vj , . . .〉 → 〈. . . , vj , . . . , vi, . . .〉, we
can write the operations as below. The CQT notation for these operations isT, P, O, andI.

Transposition Permutation Octave Shift Inversion

T : v → v + k1, k ∈ R P : v → Pij(v) O : v → v + 12nei, n ∈ Z I : v → −v

& www www# & www www & www www & www wwwb

3.2. Continuous Transformations and Callender’s T-class Space.Although Callender’s construction
of T-class space in [3] does not explicitly discuss voice leading, it is consistent with the CQT model.8 He
begins with the composer Kaija Saariaho’sVers le blanc(Figure 3). This piece abandons the idea of pitch
as discrete altogether; it consists of acontinuoustransformation from the chord C-A-B to the chord D-E-F
over the course of fifteen minutes. Lines on the score indicates the position of the voices—note that the
bottom two voices are briefly in unison towards the end of the piece.

7I’m glossing over some important issues here—for one, chords are usually considered to be sets, not multisets. See [28] for a
full explanation.

8In the general literature, voice leadings are represented by associations between sets, rather than multisets, of pitch classes
(pitches modulo 12). Callender’s construction actually gives us equivalence classes of multiset voice leadings modulo transposition.
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Figure 3:Saariaho’s Vers le blanc.

Callender’s model of continuous transformations is as follows.9 As above, ann-voice chord is a vec-
tor of real numbers〈v1, v2, . . . , vn〉, wherevi represents the pitch of theith voice. For example, Saari-
aho’s composition is a continuous interpolation from〈−12,−3,−1〉 to 〈−8,−10,−7〉; it can be written
as 〈−12,−3,−1〉 + (t/15)〈4,−7,−6〉, wheret is time in minutes and0 ≤ t ≤ 15. Callender begins
by mapping then-dimensional space of chords onto(n − 1)-dimensional “T-class space.” The space of
three-voice chords is a convenient example. Mapping each chordv to its transposition equivalence class
(T-equivalence class, orT-class for short), defined to be{v + k1|k ∈ R}, can be visualized as orthogonal
projection onto the plane{〈v1, v2, v3〉|v1+v2+v3 = 0}. For example,e1 maps to〈2/3,−1/3,−1/3〉. Note
that the images ofe1 ande2 form a basis forT-class space; we will call thema = 〈2/3,−1/3,−1/3〉 and
b = 〈−1/3, 2/3,−1/3〉. The image ofe3 is c = −a − b. Thus, the projection of Saariaho’s composition
onto the plane is−12a − 3b − c + (t/15)(4a − 7b − 6c) = −11a − 2b + (t/15)(10a − b).

Now let’s consider the effect of permutation of voices. Exchanging two voices corresponds to reflection
in the planesvi = vj ; in the planev1 + v2 + v3 = 0 this becomes reflection in one of the lines containinga,
b, orc (that is, the projections of the coordinate axes ontoT-class space). These lines intersect at the origin
at 60◦, as shown in Figure 4. Each equivalence class under permutation and transposition (PT-class) has a
unique representative in the shaded sector, which is the projection of the vectorsv wherev1 ≤ v2 ≤ v3. The
symbols•, 2, ◦, and△ indicate, respectively, theT-classes of the major triad〈0, 4, 7〉, minor triad〈0, 3, 7〉,
diminished triad〈0, 3, 6〉, and augmented triad〈0, 4, 8〉 and their equivalents under permutation. In addition,
the long arrow indicates the projection ofVers le blanc. Note that this projection crosses the linerc at the
moment the bottom two parts are in unison.

We now consider the effect of octave shift. One generally perceives aC major chord played with the C in
the highest voice as similar to one with the C in the lowest voice (root position). So, we identify all chords
that are equivalent under octave shift; that is,v ≡ w if and only if v − w ≡ 0 (mod 12). The projection
of the planesvi = 12n (n ∈ Z) are shown in Figure 5 (left); octave equivalence introduces glide reflections
in T-class space. At this point, we have the tiling known as p31m, with the shaded kite-shaped fundamental
region. We draw “mirror compositions” that lie in the sameOPT-equivalence class asVers le blanc. It is
evident that the composition begins and ends in the sameOPT-class!

Inversion is the last transformation to consider. The mapv → −v exchanges minor triads and major
triads; inT-class space, reflection in the linea = b is an inversion. Figure 5 (right) shows the tiling
(p6m) ofT-class space for three-voice chords produced by permutation, octaveshift, and inversion—note
that there is now one symbol for minor and major triads. The fundamental region, originally depicted
in Callender [3, Fig. 10, p. 12], contains exactly one representative ofeach multiset class (that is,OPTI-
equivalence class). The lattice points in the fundamental region correspond to multiset classes in twelve-tone
equal temperament.

We now desire ametriconT-class space—that is, a natural notion of the distance between two transpo-
sition classes. Callender defines the distance betweenT-classes to be the distance between their projections
into T-class space, and sets|a| = |b| = |c| = 1. There are many possible metrics with this property—
Callender’s preferred candidate is the Euclidean distance inT-class space. Multiset classes now inherit a
metric fromT-class space: the distance between multiset classes is the distance between their unique rep-
resentatives in the triangular fundamental region forOPTI-classes. Since the distance between any two
points inT-class space is never less than the distance between the respective members of their multiset

9I have changed his notation somewhat, but the essentials remain the same.
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Figure 4:T-class space for three-voice chords, with permutation symmetries.
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Figure 5:T-class space, with permutation and octave shift (left), and the addition of inversion (right).

class in this fundamental region, his metric on multiset classes is well-defined. Callender uses this metric to
investigate the shifts in our perception of chords inVers le blancas the voices draw near, but do not intersect,
a number of lattice points in the fundamental region—see his article for more details [3].

Although not explored in [3], an important issue arises when we try to define the distance betweenOPT-
equivalence classes. In this case, theOPT-classes on the dotted boundary of the kite-shaped fundamental
region in Figure 5 (left) havetwo representatives on the boundary. In order to get rid of the doubles, we must
identify the fundamental region’s dotted edges and compute the minimal distancein the resulting cone. This
cone is the quotient space ofT-class space modulo permutation and octave equivalence; in other words,it
is the quotient ofR3 under transposition, permutation, and octave equivalence. As such, it isan example of
the more general quotient space construction developed by CQT and explored in the next section.

3.3. Generalized Chord Spaces and Orbifolds. Tymoczko [28] recognized that chord spaces are prop-
erly orbifolds, meaning quotients ofRn under the action of a finite group of isometries. For example,
T-class space is the orbifoldRn/T ≃ R

n−1. The fundamental region of any tiling ofR
n, with the edge

identification dictated by the tiling’s symmetry group, is an orbifold, and that orbifold completely deter-
mines the tiling. Callender’s kite-shaped fundamental region forOPT-classes, with edge identifications, is
the orbifoldR

3/OPT (3*3 in Conway’s orbifold notation); the fundamental region forOPTI-classes is
R

3/OPTI (the orbifold*632). Other nice examples (from [28]) are the spaces of two-note chords modulo
octave equivalence (R

2/O, a torus corresponding to the tiling p1 and orbifoldo) and octave equivalence
plus permutation (R2/OP, a Möbius strip corresponding to the tiling cm and orbifold*x ). Equivalence
classes of voice leadings correspond to lines in these orbifolds. In their forthcoming paper [4], CQT further
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develop universal models for voice-leading—that is, a set of “parentspaces” in which many of the lattice
models proposed by other music theorists embed. These parent spaces are orbifolds that are quotients of
R

n under the action ofO, P, T, andI, and combinations of these. Tymoczko’s interactive program Chord-
Geometries, available athttp://www.princeton.edu/˜dmitri , will help the reader visualize and
explore some of the possibilities.

3.4. Open Problems. The geometric representation and exploration of chord relationships and voice
leadings is an active area of research. There is much interest in measures of voice-leading size and in de-
veloping efficient algorithms to find minimal voice leadings (one such algorithm isdescribed in [28]). CQT
have thoroughly described the orbifoldsR

n modulo various combinations ofO, P, T, andI for n ≤ 4, and
in higher dimensions in some cases [4]. However, there is more work to be done. In addition, Tymoczko
posed the question of finding coordinate systems for these orbifolds that have some natural musical interpre-
tation. He proposes using products of so-called “deep scales,” but there are other possibilities [32]. There
are also issues dealing with the conflict between the CQT representation of chords as multisets and their
more common representation as sets (no duplication allowed) that have yet to be resolved geometrically.

4. Tiling Canons

Vuza showed that, upon mapping beats to integers, a rhythm forms a tiling canon if and only if its inner
rhythm and outer rhythm correspond to setsA andB forming a tiling of the integers [33]. I will summarize
the literature on tiling canons and integer tilings and state some open problems.

4.1. Rhythmic Tiling Canons. A canonis a musical figure produced when two or more voices play the
same melody, with each voice starting at a different time. Canons appear in theworks of J.S. Bach and
others.Rhythmic canonsare canons in which rhythms, and not necessarily melodies, are duplicatedby each
voice. The composer Olivier Messiaen (1908–1992), who coined the term “rhythmic canon,” used rhythmic
canons in his work (Harawi, “Adieu,” and others). He describes the sound of a rhythmic canon as asort
of “organized chaos” [21, p. 46]. Using the symbolsx to represent a note onset and. a rest, the canon in
Harawi looks like this:

Voice 1: x..x....x.......x....x..x...x..x......x..x.. .x.x.x..x....x..
Voice 2: x..x....x.......x....x..x...x..x......x..x.. .x.x.x..x....x..
Voice 3: x..x....x.......x....x..x...x..x......x..x.. .x.x.x..x....x..

* * * * *

In this notation, simultaneous events are in vertical alignment. A rhythmic canon iscomplementaryif, on
each beat, no more than one voice has a note onset. For the most part, Messiaen’s canon is complementary;
asterisks mark deviations from this rule. Atiling canonis a complementary canon of periodic rhythms that
has exactly one note onset (in some voice) per unit beat. Each voice playsa rhythm pattern, called theinner
rhythm, and the voices are offset by amounts determined by a second pattern called theouter rhythm. For
example, the inner rhythm|: x.x..... :| and outer rhythm|: xx..xx.. :| form a tiling canon.
Rhythmic canons and tiling canons were first recognized as integer tilings and studied mathematically by
Vuza [33] (see [2, 10] for further background); all these articles consider canons of periodic rhythms.

4.2. Integer Tilings. A tiling of the integersconsists of a finite setA of integers (thetile) together with
an infinite set of integer translationsB such that every integer may be written in a unique way as an element
of A plus an element ofB. If the pair(A, B) forms a tiling of the integers, we writeA ⊕ B = Z, whereZ

denotes the integers. The example

A = {0, 2} andB = {. . . − 4,−3, 0, 1, 4, 5, . . .} = {0, 1} ⊕ 4Z

corresponds to the tiling canon in the previous section. Tilings of the integerswere first studied in 1950
by Hajós [14] and de Bruijn [7] in connection with factorizations of abelian groups. Newman (1977) and
others showed that all integer tilings are periodic [23]—which is not the case in higher dimensions. One-
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dimensional aperiodic tilings are possible only if we allow reflections (amonohedraltiling). Restricting
one’s attention to the integers, rather than the real numbers, may appear to be an oversimplification of the
one-dimensional tiling problem. However, Lagarias and Wang [20] showed in 1996 that all tilings of the
real number line by finite sets of intervals may be reduced to tilings of the integers.

Although many have studied this problem, the complete classification of such tilingsis an open question;
indeed, for a given finite set of integersA, it is not known whetherA is a tile in a tiling (that is, whether
there exists aB such that(A, B) defines a tiling), although there are results in some special cases. If the
number of elements ofA is a prime power, there is a simple criterion for determining whetherA tiles (see
Newman [23]). In 1999, Coven and Meyerowitz answered the question for setsA whose cardinality has at
most two prime factors, and, in their 2005 article, Granville, Laba, and Wang[13] solved the problem for
setsA whose cardinality has three prime factors. Klingsberg and I approachedthe problem from a different
angle. Instead of specifying the number of elements in the tile setA, we started with the periodN of the
tiling, and counted the number of tilings ofZN , the integers modN , by equally-spaced tiles. These are the
tilings of the formA⊕ nZ, wheren dividesN . We proved that a periodic rhythmic canon ofℓ voices, each
spaced byn notes from the previous, is complementary if and only if its inner rhythm isℓ-asymmetric, as
defined in our articles [16, 15]; if, in addition, the inner rhythm hasn notes, then it is a tiling canon. Our
formulas in [15] give the number of such tilings for eachN ; we have since extended our results to enumerate
tilings by symmetric tiles (that is,A = −A). Theℓ-asymmetry condition was originally defined to classify
certain African rhythms.

4.3. Open Problems. As mentioned before, the complete classification of integer tilings is an open
question—in particular, if the cardinality ofA is divisible by more than three primes, it is not known
whetherA tiles, except in special cases. Laba [19] proved that solving the one-dimensional tiling prob-
lem is equivalent to proving (or disproving) Fuglede’s Conjecture [12]in dimension one—a question posed
in 1974 that is still unsolved. Another area of study concerns enumeratingall tilings of a given period.
The requirement in our articles [16, 15] that the tiles be equally spaced greatly simplifies the problem of
enumerating them. Fripertinger [11] has enumerated all tilings up to period forty. A special class of tilings
occurs when both the inner and outer rhythms of a tiling canon are primitive,10 producing atiling canon of
maximal category. Vuza proved that no nontrivial tiling canons of maximal category exist for period of less
than seventy-two [33, Theorem 2.2, part one, p. 33]; this result was proved independently by Hajós [14].
There is no known formula for the number of tiling canons of maximal categoryof a given period.

The inversionof a rhythm pattern is that pattern played backwards. Beethoven used a modified tiling
canon, in which the rhythm patterns are inversions of each other, in his string quartet Op. 59, no. 2. This
type of tiling canon corresponds to a monohedral tiling of the integers. The problem of finding tiling canons
using one rhythm and its inversion is equivalent to a mathematical problem considered by Meyerowitz [22].
He proved that any set of three integers forms a monohedral tiling. The general question of which sets
can form monohedral tilings remains open. Incidentally, monohedral tilings can be aperiodic, creating
interesting possibilities for composers. In the pitch domain, certaintone rows—orderings of the twelve-tone
scale—calledderived rowsare based on monohedral tilings of period twelve. Such tilings appear in the
work of Schoenberg, Babbitt, and others. The idea is to start with a generator ofn pitches, wheren divides
12, and tileZ12 with the generator and transpositions of its retrograde (mirror image in the time domain),
inversion (mirror image modulo 12 in the pitch domain), and retrograde inversion. Given an arbitrary period
N , how many derived rows are possible, and how does the tiling determine the symmetries of the derived
row?

5. Conclusion

Tilings are a locus of cross-fertilization of mathematics and the visual arts. Regular tilings of the plane
were known to artists long before they were classified by mathematicians. Aperiodic tilings, first discov-

10A canon of periodN is primitive if N is its smallest period.
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ered by mathematicians, have now been used in art and architecture. I hope that investigation of tilings in
music theory will inspire composers, and interest in the musical applications oftilings will lead to further
investigation by mathematicians.

Acknowledgments. I am grateful for the help I received from Paul Klingsberg, Cliff Callender, and, espe-
cially, Dmitri Tymoczko, who made substantial, patient, and helpful comments on thispaper, and drew my
attention to many examples of which I was unaware.
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