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Abstract

In this survey paper, | describe three applications of tilings to music theébeyrepresentation of tuning systems
and chord relationships by lattices, modeling voice leading by tilingsdimensional space, and the classification
of rhythmic tiling canons, which are essentially one-dimensional tilings.

1. Introduction
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Figure 1:Musical tilings.

Figure 1 shows three “musical tilings”: from left, a piano keyboard, awtatic accordion keyboard, and a
notation of the Egyptianags sa’idirhythm [18]. Although, at least on the surface, it may not be clear that
the tilings are related to each other, or indeed have any musical signifigarfeet each example reveals
deeper symmetries present in music, both in the domains of pitch and rhythise Syrmetries and their
relationship to tilings are the subject of this article.

A tiling is a partitiodt of some space into congruent pieces, called tiles. There are many vedls, b
periodic and aperiodic, to tile the plane and higher-dimensional space-di@easional tilings, though
less well known, are partitions of the real line into congruent collectionatefvals. Tilings have long
been of interest to visual artists and mathematicians alike. In addition, musiisteemd mathematicians
(going back to Euler) have discovered connections between tilings anidahssuctures. In this survey
paper, | describe three applications of tilings to music theory: the repetgenof tuning systems and chord
relationships by lattices, modeling voice leading by tilingsialimensional space, and the classification of
rhythmic tiling canons, which are essentially one-dimensional tilings.

2. Euler and the Tonnetz

There are many ways to construct a scale. Solving the one-dimensiorakgaation, which describes the
behavior of string and wind instruments, produces a sequence of glalfsmctions whose frequencies are
the positive integer multiples of some constant. The scale is based on rati@taiédrfrequencies (octaves
(2:1), fifths (3:2), and so on) or approximations to these frequencies.approach builds upon a selection
of the first few ratios among terms in the sequence. Fifths and octavesagetiee Pythagorean scale; we

iles are allowed to intersect in a set of measure zero—for example, titemidimensional space are allowed to share an
edge, but not a two-dimensional area.
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multiply the starting frequency by integer powers of two and three (includiggtive integer powers) to
produce elements of the sc&ldn alternate technique, an examplejust intonation is to generate a scale
with fifths and major thirds (5:4). Although he did not originate just intonatiameE[9] was the first to
represent it as an infinite lattice, a portion of which appears in Figure ). (Réad left to right, rows are
sequences of perfect fifths, and columns are sequences oftgediec thirds, read top to bottom—therefore,
the lower left to upper right diagonals of the squares are perfect miidist{6:5). Since sequences of
either fifths or thirds are geometric, we see that this lattice is drawn on a lagarificale. A similar lattice
appeared in the late nineteenth century works of Oettingen [24] and Riéf2&inRiemann’s lattice, called
the tonnetz depicts the major and minor third relationship more explicitly (Figure 2, ceft8ice each
triangle in the tonnetz represents a major or minor triad, vertices in its duagtieablattice correspond
to triads, and edges connect triads that have two notes in common. Figugat? labels the triads (‘A
indicates A major and “am” indicates A minor), with major triads shaded.

ob eximinm ei;ls"ifum Jpeclin Muficum ad
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Hoc feilicet fpectlum infpicienti, flatim pate

Figure 2:Euler's Speculum Musicum [9, p. 350], Hugo Riemann’s Tonnetz g% the tonnetz lattice with
its dual.

It is tempting to classify Figure|2 (right) as the tiling p3fhut one should be careful about what
is actually represented. The symmetries of this lattice are transpositions Isy fifdjor thirds, or minor
thirds (geometrically, translations along the lines of the lattice), so the tiling isgis Buler’s lattice.
The fundamental region is a small rhombus. Inversion in the fifth, whiclanges major and minor
thirds, introduces horizontal reflections, giving the tiling pm. The dual latticesisting of hexagons whose
vertices are labeled by the alternating major and minor triads in Figure 2 (righggm1 if we ignore
everything except chord quality. Although this was not the original intentf@tonnetz can also represent
notes in equal temperament. In this case, we have additional symmetriesmenitaequivalence (for
example, E and Df share the same frequency), and, because twelve fifths equal seteees) octave
equivalence. Using these two symmetries instead of transpositions by fifihitiads gives a different pl
tiling whose fundamental region contains exactly one copy of each note iwéhee-tone scale.

3. Voice Leading and Continuous Transformations

We can describe relationships between chords in many ways—the circlighsfi§ just the best-known
example. If a sequence of chords is played by several voices, eanting a single note, we can track the
motion of individual voices in the progression from one chord to the nelxis association is calledoice
leading Although the conventions of voice leading have changed through tlse smae common principles
persist. When leading between two chords, it is desirable that each voieeasshort a distance (in pifdh

2Note that the octave will not “close up” in the familiar circle of fifths. Thatifsye start with 440 Hz, no matter how many
multiples we generate, this process never returns 440 Hz again. Whatlisced by repeating this method an infinite number of
times is not the circle of fifths, which occurs only in equal temperameng dense subset of all frequencies.

3Hugo Riemann, not to be confused with the mathematician Bernhard Rieman

“Interestingly, the tonnetz array forms the keyboard layout of a ctinagpatented in 1844 by the English physicist Wheat-
stone[[17]. His instrument appears to be designed for equal temeetasthough not all concertinas were—and he may have been
motivated by the chord possibilities in the dual lattice. However, | havedourevidence that Wheatstone built this instrument, or
that he had a role in the development of the tonnetz on the Continent.

SFor an introduction to plane tilings, saép://en.wikipedia.org/wiki/Wallpaper_group |

Spitch is determined by the logarithm of frequency—precisely, if we arfiifrdecide that middle C is 0, then 440 Hz (the A
above middle C) corresponds to note 9, and pitel) + 12 log, (frequency440). In this system, integers correspond to notes in
the chromatic scale of twelve-tone equal temperament.
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as possible. In order to achieve this, voice-crossing—occurring whervoices change positions in the
ordering of voices from low to high—is avoided. If we restrict oursebeetsvelve-tone equal temperament,
the closest distinct chords are those that differ by a semitone in one vdicénote that the chords in the
dual tonnetz differ by either one or two semitones in one voice). This noficloseness gives a structure
to the space of chords of voices. In fact, if we consider a “chord” to be arderedmultiset of integer
pitches, with each coordinate representing the pitch in one of the voicessmwmapn-voice chords to the
lattice Z™. The closest distinct chords are those that differ by one semitone itlyerae voice.

Our perception (and musical practice) gives this lattice-gbice chords many symmetries: if two voices
exchange pitches, if one voice shifts by an octave, or if all voices shifthéd same amount, the respective
resulting chords will sound quite similar to the original. How can we model vomeitg in a way that re-
spects these relationships? Quite a few music theorists have describelkadiog using lattices or graphs:
see Roeder [26], Douthett and Steinbach [8], Straus [27], Cohaif] Tymoczko [30]. The innovation that
Callender [3], Quinn, and Tymoczko [29, 28] (henceforth, CQT) idiiced is to embed the lattice of
voice chords intacontinuousn-dimensional space (since pitch is continuous, not discrete) and study the
effects of musically relevant symmetries. If we identify pointRit that represent “similar” chords, what
shape is the resulting space? Of course, the answer depends on intilahtees we consider. CQT de-
scribe families oithord spacesall of which are quotients dR™ under various isometries or combinations
of isometries. Many discrete models of voice-leadings relationships embely¢ imto these spaces. We
will consider an example that Callender develops in detail in [3], and themton its relationship to CQT's
general construction of chord spaces.

3.1. Representation inR™. In the discussion that follows, am*voice chord” means a vector iR".
We now represent operations on chords as rigid transformatioii®é' .otransposition moves each voice
by k pitches; permutation exchanges the pitches in two voices; octave shift moeegoice by some
integer number of octaves; and inversion sends each voice to its additarsen Each of these operations
describes a musical similarity of some sort. For example, all major triads in ositign are equivalent
under transposition. We call the set of vectors equivalentdader all combinations of the four operations
themultiset clas®f v.

Using e; to represenith standard basis vector &”, 1 to representl,1,...,1), andP;; to represent
the exchange of pitches in voicésindj given by P; : (..., v;,...,05,...) — (..., 0j,...,0;...), We
can write the operations as below. The CQT notation for these operati@h®#isO, andl.

Transposition ‘ Permutation ] Octave Shift ‘ Inversion

T:v—-v+kl,keR| P:v—PFjv) | O:v—=v+12ne,neZ I:v——v
g 9 ; 2

== | Tew | e ¢ g

3.2. Continuous Transformations and Callender’s T-class Space.Although Callender’s construction
of T-class space in [3] does not explicitly discuss voice leading, it is consisténthe CQT modef He
begins with the composer Kaija Saariahwéss le blangFigure 3). This piece abandons the idea of pitch
as discrete altogether; it consists af@ntinuoudransformation from the chord C-A-B to the chord D-E-F
over the course of fifteen minutes. Lines on the score indicates the poditibe woices—note that the
bottom two voices are briefly in unison towards the end of the piece.

"I'm glossing over some important issues here—for one, chordssaraly considered to be sets, not multisets. See [28] for a
full explanation.

8In the general literature, voice leadings are represented by assosibtbmeen sets, rather than multisets, of pitch classes
(pitches modulo 12). Callender’s construction actually gives us elgmiva classes of multiset voice leadings modulo transposition.
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Figure 3:Saariaho’s Vers le blanc.

Callender’'s model of continuous transformations is as foll®wss above, am-voice chord is a vec-
tor of real numbersuv;, ve, ..., v,), wherev; represents the pitch of thigh voice. For example, Saari-
aho’s composition is a continuous interpolation frgm12, —3, —1) to (-8, —10,—7); it can be written
as(—12,—-3,—1) + (t/15)(4,—7,—6), wheret is time in minutes and < ¢t < 15. Callender begins
by mapping the:-dimensional space of chords onte — 1)-dimensional T-class space.” The space of
three-voice chords is a convenient example. Mapping each chdtwodts transposition equivalence class
(T-equivalence class, @-class for short), defined to He& + k1|k € R}, can be visualized as orthogonal
projection onto the plang(vy, va, vs3)|v1 +v2 +uv3 = 0}. For examplee; maps to(2/3, —1/3,—1/3). Note
that the images of; ande;, form a basis fofT'-class space; we will call them= (2/3,—-1/3,—1/3) and
b = (—1/3,2/3,—1/3). The image oks isc = —a — b. Thus, the projection of Saariaho’s composition
onto the plane is-12a — 3b — ¢ + (¢/15)(4a — 7Tb — 6¢) = —11la — 2b + (¢/15)(10a — b).

Now let's consider the effect of permutation of voices. Exchanging twoegcorresponds to reflection
in the planes); = v;; in the planev; 4 v2 + v3 = 0 this becomes reflection in one of the lines contairing
b, orc (that is, the projections of the coordinate axes dhitolass space). These lines intersect at the origin
at 60, as shown in Figure 4. Each equivalence class under permutation asgdds#ion P'T-class) has a
unique representative in the shaded sector, which is the projection cét¢tersy wherev; < vy < v3. The
symbolse, o, o, anda indicate, respectively, tH€-classes of the major triad, 4, 7), minor triad(0, 3, 7),
diminished triad0, 3, 6), and augmented tria@, 4, 8) and their equivalents under permutation. In addition,
the long arrow indicates the projection@rs le blanc Note that this projection crosses the lineat the
moment the bottom two parts are in unison.

We now consider the effect of octave shift. One generally percei@sajor chord played with the C in
the highest voice as similar to one with the C in the lowest voice (root positian)w&identify all chords
that are equivalent under octave shift; thatiss w if and only if v — w = 0 (mod 12). The projection
of the planes; = 12n (n € Z) are shown in Figure 5 (left); octave equivalence introduces glidectifies
in T-class space. At this point, we have the tiling known as p31m, with the shadéeshlaped fundamental
region. We draw “mirror compositions” that lie in the sa®@@ T-equivalence class afrs le blanc It is
evident that the composition begins and ends in the A& '-class!

Inversion is the last transformation to consider. The map> —v exchanges minor triads and major
triads; in T-class space, reflection in the lime= b is an inversion. Figure 5 (right) shows the tiling
(p6m) of T-class space for three-voice chords produced by permutation, atiddtieand inversion—note
that there is now one symbol for minor and major triads. The fundamentainiegriginally depicted
in Callender/[3, Fig. 10, p. 12], contains exactly one representatieact multiset class (that IQPTI-
equivalence class). The lattice points in the fundamental region correéspmultiset classes in twelve-tone
equal temperament.

We now desire anetricon T-class space—that is, a natural notion of the distance between two transpo
sition classes. Callender defines the distance betieelasses to be the distance between their projections
into T-class space, and setg§ = |b| = |c| = 1. There are many possible metrics with this property—
Callender’s preferred candidate is the Euclidean distan@-afass space. Multiset classes now inherit a
metric fromT-class space: the distance between multiset classes is the distance beeiragmidbe rep-
resentatives in the triangular fundamental region@@T1I-classes. Since the distance between any two
points in T-class space is never less than the distance between the respective snefrtheir multiset

°I have changed his notation somewhat, but the essentials remain the same.
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Figure 4:T-class space for three-voice chords, with permutation symmetries.
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Figure 5:T-class space, with permutation and octave shift (left), and the addition akiowngright).

class in this fundamental region, his metric on multiset classes is well-defiadldn@er uses this metric to
investigate the shifts in our perception of chord¥ans le blan@s the voices draw near, but do not intersect,
a number of lattice points in the fundamental region—see his article for moriésdéta

Although not explored in [3], an important issue arises when we try toeléfimdistance betweddP T-
equivalence classes. In this case, @BT-classes on the dotted boundary of the kite-shaped fundamental
region in Figure 5 (left) havewo representatives on the boundary. In order to get rid of the doubées)wst
identify the fundamental region’s dotted edges and compute the minimal distetheeresulting cone. This
cone is the quotient space @fclass space modulo permutation and octave equivalence; in other \tords,
is the quotient ofR3 under transposition, permutation, and octave equivalence. As suchnieisample of
the more general quotient space construction developed by CQT alwdezkm the next section.

3.3. Generalized Chord Spaces and Orbifolds. Tymoczko P8] recognized that chord spaces are prop-
erly orbifolds meaning quotients dR™ under the action of a finite group of isometries. For example,
T-class space is the orbifold” /T ~ R"~!. The fundamental region of any tiling &", with the edge
identification dictated by the tiling’s symmetry group, is an orbifold, and thaifadocompletely deter-
mines the tiling. Callender’s kite-shaped fundamental regio®BT-classes, with edge identifications, is
the orbifoldR?/OPT (3*3 in Conway’s orbifold notation); the fundamental region @PTI-classes is
R?/OPTI (the orbifold*632). Other nice examples (from [28]) are the spaces of two-note chordsiimo
octave equivalenceR /0O, a torus corresponding to the tiling p1 and orbifeldand octave equivalence
plus permutation®?/OP, a Mobius strip corresponding to the tiling cm and orbiféld). Equivalence
classes of voice leadings correspond to lines in these orbifolds. In drdicéming paper [4], CQT further
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develop universal models for voice-leading—that is, a set of “pagpates” in which many of the lattice
models proposed by other music theorists embed. These parent spacebifmids that are quotients of
R™ under the action 00, P, T, andl, and combinations of these. Tymoczko’s interactive program Chord-
Geometries, available attp://www.princeton.edu/ dmitri , Will help the reader visualize and
explore some of the possibilities.

3.4. Open Problems. The geometric representation and exploration of chord relationships coe v
leadings is an active area of research. There is much interest in mea$wace-leading size and in de-
veloping efficient algorithms to find minimal voice leadings (one such algorittdessribed in [28]). CQT
have thoroughly described the orbifol@8 modulo various combinations @, P, T, andI for n < 4, and

in higher dimensions in some cases [4]. However, there is more work toriee dio addition, Tymoczko
posed the question of finding coordinate systems for these orbifoldsatbasbme natural musical interpre-
tation. He proposes using products of so-called “deep scales,” lnat éine other possibilities [32]. There
are also issues dealing with the conflict between the CQT representatitvwraiscas multisets and their
more common representation as sets (no duplication allowed) that have petasdived geometrically.

4. Tiling Canons

Vuza showed that, upon mapping beats to integers, a rhythm forms a tiling daaad only if its inner
rhythm and outer rhythm correspond to sétand B forming a tiling of the integers [33]. | will summarize
the literature on tiling canons and integer tilings and state some open problems.

4.1. Rhythmic Tiling Canons. A canonis a musical figure produced when two or more voices play the
same melody, with each voice starting at a different time. Canons appear wotks of J.S. Bach and
others.Rhythmic canonare canons in which rhythms, and not necessarily melodies, are dupligagadh
voice. The composer Olivier Messiaen (1908—-1992), who coined thme"teythmic canon,” used rhythmic
canons in his workHarawi, “Adieu,” and others). He describes the sound of a rhythmic canonsasta

of “organized chaos” [21, p. 46]. Using the symbgl$o represent a note onset ana rest, the canon in
Harawi looks like this:

Voice 1. X.XoXeoXenXoXon XeXewn Xo X XXX XX

Voice 2: XoXewoXerrrn Xon X X X X XU X XXX XX

Voice 3: XoXooXewnon X Xe Xo X X X0 X XXX XX
* * % % *

In this notation, simultaneous events are in vertical alignment. A rhythmic caremmiplementaryf, on
each beat, no more than one voice has a note onset. For the most parheiessanon is complementary;
asterisks mark deviations from this rule.tilng canonis a complementary canon of periodic rhythms that
has exactly one note onset (in some voice) per unit beat. Each voicegalythm pattern, called thiener
rhythm and the voices are offset by amounts determined by a second pattethtbalbeiter rhythm For
example, the inner rhythin x.x..... :| and outer rhythnf: xx..xx.. :| form a tiling canon.
Rhythmic canons and tiling canons were first recognized as integer tilimhstadied mathematically by
Vuza [33] (se€ [2, 10] for further background); all these articlassider canons of periodic rhythms.

4.2. Integer Tilings. A tiling of the integersconsists of a finite sed of integers (thdile) together with

an infinite set of integer translatiossuch that every integer may be written in a unique way as an element
of A plus an element oB. If the pair(A, B) forms a tiling of the integers, we writd & B = Z, whereZ
denotes the integers. The example

A={0,2}andB ={...—4,-3,0,1,4,5,...} = {0,1} & 4Z

corresponds to the tiling canon in the previous section. Tilings of the integees first studied in 1950
by Hajos [14] and de Bruijn [7] in connection with factorizations of abelian gsoudewman (1977) and
others showed that all integer tilings are periodic [23]—which is not the zakigher dimensions. One-
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dimensional aperiodic tilings are possible only if we allow reflectionsm¢amohedraliling). Restricting
one’s attention to the integers, rather than the real numbers, may appeaatooversimplification of the
one-dimensional tiling problem. However, Lagarias and Wang [20] stawé 996 that all tilings of the
real number line by finite sets of intervals may be reduced to tilings of the irsteger

Although many have studied this problem, the complete classification of such tdingopen question;
indeed, for a given finite set of integers it is not known whether is a tile in a tiling (that is, whether
there exists & such that( A, B) defines a tiling), although there are results in some special cases. If the
number of elements ofl is a prime power, there is a simple criterion for determining whethéles (see
Newman [23]). In 1999, Coven and Meyerowitz answered the questiosetsA whose cardinality has at
most two prime factors, and, in their 2005 article, Granville, Laba, and ViE8igsolved the problem for
setsA whose cardinality has three prime factors. Klingsberg and | approahkgqatoblem from a different
angle. Instead of specifying the number of elements in the tilelsete started with the period/ of the
tiling, and counted the number of tilings @fy, the integers modv, by equally-spaced tiles. These are the
tilings of the formA & nZ, wheren divides N. We proved that a periodic rhythmic canon/ofoices, each
spaced by: notes from the previous, is complementary if and only if its inner rhythfiasymmetric, as
defined in our articles [16, 15]; if, in addition, the inner rhythm hasotes, then it is a tiling canon. Our
formulas in [15] give the number of such tilings for ea€hwe have since extended our results to enumerate
tilings by symmetric tiles (that isA = — A). The/-asymmetry condition was originally defined to classify
certain African rhythms.

4.3. Open Problems. As mentioned before, the complete classification of integer tilings is an open
question—in particular, if the cardinality od is divisible by more than three primes, it is not known
whetherA tiles, except in special cases. Laba [19] proved that solving the ionendional tiling prob-
lem is equivalent to proving (or disproving) Fuglede’s Conjecture {d2mension one—a question posed
in 1974 that is still unsolved. Another area of study concerns enumeraltinijngs of a given period.
The requirement in our articles [16, 15] that the tiles be equally spacedgsmplifies the problem of
enumerating them. Fripertinger [11] has enumerated all tilings up to perityd fospecial class of tilings
occurs when both the inner and outer rhythms of a tiling canon are primftpenducing ailing canon of
maximal categoryVuza proved that no nontrivial tiling canons of maximal category exispéwviod of less
than seventy-two [33, Theorem 2.2, part one, p. 33]; this result waged independently by Hag [14].
There is no known formula for the number of tiling canons of maximal categaygiven period.

Theinversionof a rhythm pattern is that pattern played backwards. Beethoven usedifietidiling
canon, in which the rhythm patterns are inversions of each other, in hig smartet Op. 59, no. 2. This
type of tiling canon corresponds to a monohedral tiling of the integers. iidi@egm of finding tiling canons
using one rhythm and its inversion is equivalent to a mathematical problesidened by Meyerowitz [22].
He proved that any set of three integers forms a monohedral tiling. Tierglequestion of which sets
can form monohedral tilings remains open. Incidentally, monohedral tiliagsbe aperiodic, creating
interesting possibilities for composers. In the pitch domain, cettaie rows—orderings of the twelve-tone
scale—calledderived rowsare based on monohedral tilings of period twelve. Such tilings appear in the
work of Schoenberg, Babbitt, and others. The idea is to start with aatenefn pitches, wherex divides
12, and tileZ,5 with the generator and transpositions of its retrograde (mirror image in the timaidp
inversion (mirror image modulo 12 in the pitch domain), and retrograde inver&iwen an arbitrary period
N, how many derived rows are possible, and how does the tiling determingrimaetries of the derived
row?

5. Conclusion

Tilings are a locus of cross-fertilization of mathematics and the visual artgul&etilings of the plane
were known to artists long before they were classified by mathematiciansiodjgetilings, first discov-

19A canon of periodV is primitive if IV is its smallest period.
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ered by mathematicians, have now been used in art and architecturee tHadpnvestigation of tilings in
music theory will inspire composers, and interest in the musical applicatiotilings will lead to further
investigation by mathematicians.
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