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Abstract

The Malekula sand tracing tradition is discussed as an exemplary case in ethnomathematics. The tradition evidences graph
theoretic, geometric, and topological ideas. The sand tracings are placed within Malekula culture and the systematic procedures
used to trace the figures are elaborated. Bridges to art and religion are noted.

Ethnomathematics

In this paper I discuss the sand tracing tradition of the Malekula of Vanuatu. But first I have several
preliminary comments in order to put this into the contexts of ethnomathematics and of mathematics.

The basic tenet of ethnomathematics is that the expression of mathematical ideas is intimately related
to culture; that ideas arise within cultural contexts and which ideas are emphasized and how they are
expressed vary depending on the culture. My studies in ethnomathematics focus on the mathematical
ideas of peoples in traditional or small-scale cultures.

Among mathematical ideas, I include those ideas involving number, logic, and spatial configuration,
and, more significantly, their combination or organization into systems and structures. The need to clarify
what is meant by mathematical ideas is an important issue raised by ethnomathematics. It is now
generally recognized that what we refer to as modern mathematics is, in itself, the confluence of ideas
from many cultures eventually merged through translation, media, and standardization of expression. But
the term mathematics has no clear and agreed upon definition. More important, however, is that in most
cultures, mathematics is not set apart as a separate, explicit category. Mathematical ideas, however, do
exist with or without that explicit category and whether or not the ideas fed into or effected the
mathematical main stream. As a result, mathematical ideas are found in contexts appropriate to the
cultures in which they arise. These contexts could be, for example, what we might categorize as
navigation, art, record keeping, religion, kinship, games, decoration, divination, construction, or
calendrics.

By including the mathematical ideas of cultures previously ignored, we introduce considerable
diversity and geographic breadth. The number of different cultures, using the criterion of mutually
exclusive speech communities, that is, having different languages, has remained at about 5000 to 6000
during the past 600 years. (It is the number of people in the culture and the area they dominate that has
changed considerably.) Although today there is an overlay of a few dominant cultures, traditional cultures
still exist, even if in some cases blended with or blurred within the dominant culture as subcultures, part
cultures, or composite cultures. The special contribution of ethnomathematics is elaborating the
mathematical ideas of those traditional cultures while recognizing that the ideas are an integral part of the
intricate web of language, beliefs, and life-ways that make up the culture. It is this focus that should make
ethnomathematics of particular importance and relevance to people concerned with bridges that link
mathematics to other cultural expressions. In ethnomathematics, we emphasize that mathematical ideas
are embedded in cultural contexts and that, as we discuss the mathematical ideas, we must retain these
bridges in order to properly and fully see the ideas for what they are.



Another important note is that until quite recently, over 90% of traditional cultures had no writing as
we generally use the term. To learn about the mathematical ideas of cultures that had no writing systems
and whose traditions are no longer extant, we must depend on information that can be extracted from
artifacts or from the reports of observations left by others. Even where the ideas are recent or current,
they may be part of an oral tradition and so must often be gleaned from observations and from the
interpretation of material things. Thus, the study of ethnomathematics often interacts with or draws upon
fields such as archeology, ethnology, linguistics, and culture history. This feature of ethnomathematics
involves another set of bridges--bridges to disciplines and perspectives that are not the usual sources for
mathematicians or mathematical investigations.

During the past 80 years, there have been vast changes in knowledge, understanding and theories about
culture, language, and cognitive processes. We have come to understand that there is no single, universal
path which all cultures or mathematical ideas must follow. When we learn about the varied and often
quite substantial mathematical ideas of traditional cultures, we are not learning about some early phase in
humankind's past. We are learning about pieces of a global mosaic. By incorporating expressions of
different peoples, at different times, and in different places, we are enlarging our understanding of the
variety of human expressions and human usages associated with the same basic ideas. (Recognizing that
there is a plurality of paths, does not, of course, preclude that there was interaction, sharing or borrowing,
but that would have to be specifically shown.)

Now, as we turn to the Malekula sand tracing tradition, we move beyond generalities and give more
substance to many of the comments above about ethnomathematics. Within ethnomathematics, I am most
interested in those cases for which analysis of structure can be combined with evidence that the people
themselves were concerned with the structure. The Malekula sand tracings are one such case.

The Malekula and Graph Theoretic Ideas

The Malekula live in the South Pacific in the Republic of Vanuatu, which was formerly known as the
New Hebrides. A particular idea evidenced by their sand tracing tradition falls within what Western
mathematicians call Graph Theory and associated with it are other topological and geometric ideas. So,
first let us collect some of our ideas on graph theory. Described geometrically, graph theory is concerned
with arrays of points (we call them vertices) interconnected by lines (which we call edges).

A classical question in graph theory is "For a graph, can a continuous path be found that covers every
edge once and only once? And, if such a path exists, can the path end at the point it started?" This is the
question that is said to have inspired the founding of graph theory by the mathematician Euler. According
to the story, there were seven bridges in Konigsberg where Euler lived. The townspeople were interested
in knowing if, on their Sunday walks, they could start from home, cross each bridge once and only once
and end at home. Between Euler in the 1730s and Hierholzer about 130 years later, a complete answer
was found. Before stating the result, I have to introduce the degree of a vertex. The degree of a vertex is
the number of edges that emanate from it. A vertex is odd if its degree is odd and even if its degree is
even. First of all, not all graphs can be traced continuously covering every edge once and only once. If
such a path can be found, we call it, in honor of Euler, an Eulerian path. Such a path exists if the graph
has one pair of odd vertices, provided you start at one of them and end at the other. And, if all the
vertices are even, such a path can be traced starting anywhere and ending where you began. The cases in
which there cannot be such paths are when the graphs have more than one pair of odd vertices.

Some examples of graphs are in Figure 1. In example (d), every vertex is of degree four--you can start
anywhere and end where you started. In (b) (which some of you might recognize as a children's game if
you grew up on the streets of New York City or London or Berlin), there are three vertices of degree four
and two vertices of degree three. An Eulerian path can be found provided you start at one of the odd
vertices and end at the other. Example (a) has one vertex of degree four and four vertices of degree three
and so it cannot be done. Finally, example (c), a 19" —century Danish party puzzle, has eight vertices of
degree three so it cannot be done. [(a) would require two lines or backtracking and (c) would require four



lines or backtracking.] The philosopher Wittgenstein in his Remarks on the Foundations of Mathematics
used this example of tracing a figure--with a figure very similar to (c)--as one that captures the essence of
mathematics writing that "it is recognizable at once as a mathematical problem"[3].
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Figure 1: Examples of graphs.

Now back to the Malekula-----

In the 1920s, Bernard Deacon, a graduate student in ethnology at Cambridge University, studied
among the Malekula. Deacon observed a tradition of tracing figures in the sand. Believing there was
something quite important about it, he was meticulous in copying 95 figures and numbering the order in
which every line on every figure was traced. While waiting for the boat home upon completion of his
fieldwork, Deacon died of Blackwater fever. His doctoral mentor and a fellow graduate student published
much of his work including his very detailed field drawings [2]. I think, perhaps, that his bad fortune led
to the publication of this information (essentially raw data) that he might only have published in
summarized form had he lived. Deacon, however, does seem to have had unusual insight combined with
respect for the capabilities of the Malekula.

According to the Malekula, when a man dies, in order to get to the Land of the Dead, his ghost must
pass a spider-like ogre who challenges him to trace a figure in the sand. The stipulation is that he must
trace the entire figure without lifting his finger, without backtracking, and, if possible ending where he
started. (These stipulations should be familiar--the Malekula are specifying what we discussed above as
Eulerian paths.) If he does not meet the challenge, he cannot proceed to the Land of the Dead. They also
have a myth about the origin of Death that involves figure tracing. The myth centers around two brothers
Barkulkul and Marekul who have come to earth from the sky world. When Barkulkul leaves his wife to
go on a trip, he places a vine in a certain configuration on the closed door of their house. When Barkulkul
returns he sees that the vine has been disturbed. He goes to the men's house and challenges all the men
gathered there to trace a figure in the ashes on the floor. Because Marekul cannot trace the figure
properly (that is, with the stipulations previously stated), Barkulkul knows it was his brother who visited
while he was away. The story goes on, but the important point here is that knowing the figures and
tracing them properly is a serious matter. It is not a game and not just the concern of a few people. It is,
however, restricted to men.

Tracing the Figures

The 95 figures range from simple closed curves to having more than 100 vertices and many having
vertices of degree 10 or 12. Not only do we have the Malekula statement of an interest in tracing these
figures continuously, covering every edge once and only once, and if possible, ending at the starting
point, but we have the exact tracing paths that upon analysis bear it out. The Malekula refer to the figures
as nitus. Figure 2 shows a few of them. In actuality the nitus measure about a square meter or more. We
will now discuss some of these figures in greater detail.
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Figure 2: Malekula sand tracings (nitus).

In examining the tracing paths, I found more than just this graph theoretic concern. When an Eulierian
path is possible, there can be many different ways to trace it. The Malekula tracing processes are very
systematic within each figure but, even more important, the systems extend to groups of figures. There
are three or four of these extended systems, one of which we'll look at in detail. First, for a large group of
figures the system is what I call a process algebra. Namely, in the tracing of each figure there is some
initial procedure (that is, an ordered set of motions) followed by a formal transformation of that
procedure. And, for the group of figures, only a particular set of transformations is used. TI'll expand on
this using as an example a small, made-up initial procedure. Let us say that the initial procedure is the



ordered set of motions A shown in Figure 3. It can be followed by itself--AA . It can be followed by
each motion rotated through 90° --AAy, There can be a reflection of each motion across a vertical axis
(right and left interchange, up and down remain the same) --AAy. The order for performing the motions
can be inverted-- AA'. Notice that the transformed procedures do not yield the visual effects one usually
associates with these words because, since the tracing is continuous, each procedure picks up where the
last leaves off. In all, the set of transformations used by the Malekula are I (identity), rotate 90°, rotate
180°, rotate 270 °, reflect vertical, reflect horizontal, each with or without inversion.

AN

AAy
Figure 3: Initial procedure A followed by some of its transformations.

Now, let us look at some of the nitus to see how the Malekula traced them. Figure 4 shows a nitus and
its initial procedure A. In terms of A, the complete tracing path can be described as AAgA130Az70. The
visual fourfold symmetry results from successive rotations of the procedure. (The basic unit is not what I
would have visualized from the end result.)

Figure 5 shows a tracing in three stages. Each stage is a procedure followed by its rotation through
180°. The visual effect is horizontal and vertical symmetry but it was created by rotation of the
procedures. Usually discussions of symmetry rely only on after completion static effects. Here we have
both that and the dynamic symmetry of construction.

Another nitus traced in three stages is one previously shown in Figure 2c. Here, too, each stage is a
procedure followed by its transformation by a 180° rotation. In this case the procedures, the visual effect,
and the nitus description all reiterate the 180° rotation. The Malekula description of the nitus is two of the
same kind of fishes placed head to tail.

Next, Figure 6 shows a nitus traced in four stages--each stage is a procedure followed by its inversion.

In the last illustration, Figure 7, the complete tracing can be described as AA;3AvAy which brings us
to the need for a bit of algebra and which raises an important point about this use of modern symbolism.

In each description, such as AAgA;gAs for the nitus in Figure 4, I described each subsequent
procedure with reference to the initial procedure. These could be described differently. For example, if
each procedure is referred to the one just before, it would be AAg(Ago)so(Aiso)eo. Or, referring the last pair
of procedures to the first pair, the result is (AAg) (AAg)iso. All of theses versions show successive
rotations but with different emphases. For the last nitus (Figure 7), however, the different versions
involve different transformations. Referring each procedure to the initial procedure, we had AA;3AvAg.
Instead we'll refer each procedure to the one before it [AA;go (A1so) (Av)» ] or we'll refer the last pair to
the first pair if the pairing is possible [(AA1s) (AAig)» ]. To solve this we need a product table for the
transformations; that is, a table showing the result of one transformation followed by another. (See Table
1). Notice that the X and Y in the table are not in the set of transformations used by the Malekula and so
the pairs that lead to them could not have occurred. Specifically, there could be no 90(V) or H (270). The
transformations X and Y are, in fact, reflections across the diagonals and these were not present. Using
the table, we have three different, but equivalent, symbolic representations:

AA]SOAVAH AA] 80(A1 80)H(AV)180 - AAISO(AAI 80)V



Figure 4: The initial procedure A and the final figure AAgpA 1504 70.

Figure 5: A nitus traced in three stages. In each stage, the initial procedure (A, B, and C) starts at S,
ends at Q, and is followed by the procedure rotated 180° The final figure is AA,;5BB50CC 5.



Figure 6: A nitus traced in _four stageé. In the first and third stages, the initial procedures (A and C)
start at S, end at Q, and are followed by the procedure transformed by inversion. For the second and
fourth stages, the initial procedures (B and D) start instead at F. The final figure is AA'BB'CC'DD’.

Figure 7: The initial procedure A and the final figure AA 504y Ap.



Each of these describes the structure of what was actually done but each version implies a slightly
different conceptualization by the Malekula. That is, even though we know exactly what they did, we do
not know exactly what they thought while they did it. But, being able to generate different versions can
give us different insights. To me, the last version seems more in keeping with the overall procedures for
the other figures, but that is just conjecture on my part.

I 90 180 270 | V H

I I 90 180 |270 | V H

90 90 180 | 270 I Y X

180 | 180 [ 270 I 90 H \

270 | 270 I 90 180 | X Y
\Y \ X H Y I 180

H H Y \Y X 180 1

Table 1: Transformation product table.

These are just a few of the 95 tracings but in them you can see that in this sand drawing tradition there
are:
1. A graph theoretic goal, which is carried out, of tracing figures continuously covering each edge
once and only once and, where possible, beginning and ending at the same point.
2. There is the creation of visual symmetry in most of the figures.
3. Within these self-imposed constraints, the individual figures are traced quite systematically.
And 4. For different groups of figures, these systematic procedures are particular expressions of larger
systems. For the system we have looked at, selections from a specific set of transformations are applied

to different basic procedures.

Taken by themselves, simply as figures, the tracings are quite intricate and quite attractive. In fact,
they have been compared to well-known works of Western art. In 1944, the eminent art historian,
Ananda Coomaraswamy, who was curator of the Boston Museum of Fine Arts for some 30 years, wrote
an article about Diirer's engraving entitled "Knots" and da Vinci's engraving "Concatenation". In his view,
these are part of a worldwide tradition of single-line drawings. "But...", he says and shows one of the
Malekula figures, "But it is, perhaps, in the New Hebrides that the one-line technique attains its fullest
development"[1]. From their place in Malekula culture, the figures represent another, perhaps more
important bridge, that is, they are clearly religious expressions, particularly related to Malekula myths
about death. But above all, for those of us interested in mathematical ideas, as we consider the tracing
goals, follow the tracing procedures, and view the tracing outcomes, they are a bridge to some
understanding of an intellectual endeavor of the Malekula. In 2003, UNESCO included the Malekula sand
tracing tradition on the World Heritage list proclaiming it 'A Masterpiece of the Oral and Intangible
Heritage of Humanity'.
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