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Abstract

Hamiltonian cycles on the edge graphs of the regular polytopes in three and four dimensions are
investigated with the primary goal of finding complete multi-colored coverages of all the edges in
the graph. The concept of a Hamiltonian path is then extended to the notion of Hamiltonian two-
manifolds that visit all the given edges exactly once. For instance, the 4D simplex can be covered
by a strip of 5 triangular facets that form a Moebius band! The use of Hamiltonian cycles to create
physical dissection puzzles as well as geometrical sculptures is also investigated. The concepts are
illustrated with computer graphics imagery and with small maquettes made with rapid prototyping
techniques.

Figure 1:  Path-based sculptures by K. Verhoeff and R. Roelofs

1.  Introduction 

The edges of the regular polytopes in three and higher dimensional spaces form highly symmetrical
graphs. The edge graphs of the 3D Platonic and Archimedean solids have stimulated some artists, such as
K. Verhoeff and R. Roelofs, to build impressive constructivist sculptures by sweeping a regular polygonal
cross section along some or all of the edges (or cords) of a regular or semi-regular polyhedron and making
sure that the corners are nicely mitered (Fig.1). Often the subset of edges is selected in such a way that a
single, branchless, closed-loop path results. A sequence of edges that visits all the vertices of a graph
exactly once is called a Hamiltonian path, or a Hamiltonian cycle if the path closes into a loop. These
sculptures have inspired me to ask what Hamiltonian cycles might exist on all the regular polytopes in
three and four dimensions, and in what ways such paths might lead to new and attractive sculptures. The
potential for interesting new configurations is enormous: While the most complex graph of a 3D Platonic
solid has only 30 edges, on a 4D regular polytope the number of edges can be as high as 1200. 



This study starts with an overview of the Hamiltonian cycles on the 3D Platonic solids and investigates
what kind of geometrical sculptures or puzzles might be derived from them. This includes not only pris-
matic sweeps along such Hamiltonian cycles, but also minimal surfaces suspended in such loops, as well as
polyhedral dissections resulting from a cut that passes through a Hamiltonian subset of the edges.

The discussion then focusses on the six regular polytopes in 4-dimensional space and the existence of
symmetrical Hamiltonian cycles on suitable projections of these graphs into 3D space – after all, at some
point one would like to enjoy actual, physical sculptures, not just abstract mathematical constructs. One
other requirement is added to the desired Hamiltonian cycles on these projected graphs: We would like to
find cycles of a special shape, so that a collection of congruent copies of them will cover all the edges of
the graph. After a multi-year effort [3,5], such cycles have now been found for all the 4D regular poly-
topes, including the 120-Cell and the 600-Cell. 

Subsequently I extend the concept of the piecewise linear (1-manifold) Hamiltonian path to the notion
of Hamiltonian 2-manifolds; these are partial surfaces or closed shells of facets that cover all the edges of a
given polytope. For instance, the 4D simplex can be covered by a strip of five triangular facets that form a
Moebius band. And two copies of this Moebius band can then cover the whole surface of that simplex.

Throughout this presentation I will rely heavily on computer graphics and on maquettes made by lay-
ered manufacturing on a rapid prototyping machine to assist visualization of these fascinating geometrical
objects. Hopefully, some of these models will inspire courageous artists to create one or two large-scale
sculptures of the most attractive constructions.

2.  Hamiltonian Cycles and Dissections of the 3D Platonic Solids

To set the stage for the study of the graphs of the 4D regular polytopes, I first review on the more amenable
3D Platonic solids. When looking for Hamiltonian cycles on these objects of genus zero, it helps to realize
that such a path must split the surface into two regions that are topologically equivalent to disks. We can
thus look for a suitable connected subset of half the faces of a polyhedron, so that the edge of this region
touches all vertices exactly once. We can then go one step further and ask whether this partitioning can be
continued through the volume of the solid, so that two pieces result that can be physically separated. This
then provides another attractive way to visualize the Hamiltonian cycles on these polyhedra (Fig.2).

Figure 2:  Hamiltonian dissections of the Platonic solids.
(Some net templates for these objects can be found in an appendix to the electronic paper version)



On the simplest regular solid, the tetrahedron, there is only one possible cycle, composed of four edges
that surround two adjacent triangles, and this polyhedron can readily be dissected by connecting the four
edges to the centroid (Fig.2a).

The cube also admits only one possible cycle: eight edges surrounding three in-line squares. The
extension of this cut to the centroid creates two congruent parts that slide together with a snug fit (Fig.2b).

There exist two possible Hamiltonian cycles on the octahedron: a path with D2-symmetry in the shape
of a double-Z (Fig.2c), and a 3-fold zigzag around the sides of the octahedron when the latter is viewed as
a 3-sided antiprism, exhibiting D3d symmetry. The corresponding half-shells correspond to two of the three
possible ways in which four triangles can be assembled in the plane. Both cycles readily yield dissections
when extended to the centroid.

To form two congruent half-shells surrounded by a Hamiltonian cycle for the dodecahedron, we have
to assemble six pentagons. Only one arrangement, forming an S-shaped path of tiles, will work. However,
the two half-shells are so intertwined that there is no movement that allows the faces to be separated with-
out some of them passing through some other ones. On the other hand, this object can be partitioned into
three separable pieces by conically extruding 6, 3, and 3 pentagons to the centroid, respectively (Fig.2f).

The Icosahedron presents a different challenge. We need to look for all possible ways in which ten
equilateral triangles can be connected so that their joint perimeter visits every vertex exactly once. There is
one fairly obvious Hamiltonian cycle with S6-symmetry, and it readily forms a dissection when stretched
to the centroid (Fig.2d). Furthermore, there are also seven Hamiltonian cycles splitting the icosahedron
into two congruent halves (Fig.3) while exhibiting C2-symmetry around the center of one of the edges in
the path (marked by a dot). In addition, there are several cycles that lead to two non-congruent half-shells.
A few cycles, e.g., the one corresponding to the rightmost net, marked *  in Figure 3, also lead to a dissec-
tion of the solid polyhedron, if we modify the internal partitioning surface to have more edges parallel to
the direction in which we plan to slide the two pieces apart (Fig.2e). 

Figure 3:  The nets of the seven C2-symmetrical paths that cut an icosahedron into congruent half-shells.

3.  Uniform Edge Coverage with Congruent Hamiltonian Cycles

In preparation for our ultimate goal in 4D, we will try to fully cover the above edges graphs with congruent
copies of a Hamiltonian cycle. However, the octahedron is the only Platonic solid that possesses vertices
with an even valence. Indeed, two copies of the double-Z path (Fig.2c) can jointly cover all the edges of
this graph [5, Fig.2b]. Clearly, for the other solids with odd valences there is no hope to achieve such cov-
erage. However, if we are willing to consider a uniform double coverage of all edges, then we have a rea-
sonable challenge. In the tetrahedron, cube, and dodecahedron the number of vertices (and thus the length
of the Hamiltonian cycle) is equal to two thirds of the total number of edges. Thus we should try to use 3
copies of a suitable Hamiltonian cycle to cover all polyhedron edges exactly twice. For the icosahedron
this ratio is 2/5, and thus we should look for a set of five copies to obtain uniform double coverage. 

*



It turns out that three of these four puzzles have satisfactory solutions. As an illustration we show the
dodecahedron and the icosahedron with double edges (Fig.4a,b). The individual Hamiltonian cycles alter-
nate between outer and inner edges. The cube is a special case; its unique Hamiltonian cycle cannot be rep-
licated in a manner to cover all edges twice. But by being a little more open-minded we can also get around
this problem: If we allow an open-ended Hamiltonian path, terminated at each end by two half edges, the
necessary uniform coverage can be achieved (Fig. 4c); the three paths together form one 3-fold symmetric
cycle that covers all edges twice.

Figure 4:  Double edge coverage of (a) the dodecahedron and (b) the icosahedron with 3 and 5 cycles, 
respectively, and (c) of the cube with 3 congruent Hamiltonian paths.

4.  Sculptures Inspired by Hamiltonian Paths

This section samples some artistic constructions resulting from these mathematically determined models. 

4.1  Sweeps along 3D Hamiltonian Paths

Figure 5a shows a simple prismatic sweep along the unique Hamiltonian cycle of the dodecahedron using a
6-sided cross section suitably modified to match the dihedral angle of 116.5° of the Platonic solid.

Figure 5:  Sweep sculptures derived from Hamiltonian cycles on the dodecahedron.

In the spirit of Roelofs’  sculpture (Fig.1b), instead of traversing the outer edges of a Platonic polyhedron,
one can use a set of space diagonals to create a path that visits all 20 vertices exactly once. As a variation
of this theme, Figure 5b shows a highly symmetrical Hamiltonian cycle that is composed of 20 face diago-
nals on a dodecahedron. Sculptures often gain in drama and impact if some of their inherent symmetries
are judiciously broken. Figure 5c shows an example of a sculpture derived from a stack of two dodecahe-
dra, where the Hamiltonian path has been made as irregular as possible.



4.2  Embedded Soap Films

As an extension of the Volution surfaces presented in Granada [4], we can create similar objects based on
Hamiltonian cycles on the edges of Platonic solids. Using such a cycle as a wire frame, a surface topologi-
cally equivalent to a disk can be suspended in this loop, and a program such as the Surface Evolver by Ken
Brakke [1] can be used to smooth its geometry into the shape of a minimal surface. To make the resulting
sculptures more interesting, additional tunnels connecting different flanges can be introduced, and the sur-
face optimization process can be repeated. This leads to Volution surfaces of higher genus. Figure 6 shows
results based on the dodecahedron, and on the icosahedron with 2 and 4 tunnels, respectively.

Figure 6:  Volution shapes based on Hamiltonian cycles on (a) the dodecahedron and (b,c) the icosahedron.

5.  Hamiltonian Cycles on the Regular 4D Polytopes

In four dimensions there exist six regular polytopes [2]. Table 1 summarizes some of their salient geomet-
ric features and lists the valence v of the vertices, the number w of faces (or cells) sharing each edge, the
number n of sides on each face, and the number and type of cells that makes up the shell of each polytope.
Many different symmetric edge projections from 4D to a 3D subspace have been discussed and illustrated
in [3]. We restrict ourselves to close-up perspective cell-first projections, where the whole 3D image is
completely contained within a single outer cell. These projections maintain a high degree of symmetry and
have no coinciding vertices or edges. 

An ongoing quest for the last couple of years has been to find congruent Hamiltonian cycles that will fully
color the edge graphs of these six polytopes. The results for the four simpler ones has been presented last
year [5], but the solutions for the two large graphs of the 120-Cell and the 600-Cell have eluded us until
recently. Here is a quick review of the simple cases: The 4D simplex can be covered by two identical
Hamiltonian cycles that nicely complement each other (Fig.7a). The 4D cross polytope (16-Cell) requires
three colors, since all its vertices are of valence 6. A very attractive symmetrical arrangement of three con-
gruent paths has been found (Fig.7b). The hypercube requires only two Hamiltonian cycles, since all its
vertices are of valence 4. Several different valid coloring schemes have been found. The one shown in Fig-
ure 7c transforms one path into the other with a simple 90°-rotation around the horizontal axis shown.

Table 1: Characteristics of the Regular Polytopes in 4D

Simplex Tesseract 16-Cell 24-Cell 120-Cell 600-Cell

#Vertices 5 (v=4) 16 (v=4) 8 (v=6) 24 (v=8) 600 (v=4) 120 (v=12)

# Edges 10 (w=3) 32 (w=3) 24 (w=4) 96 (w=3) 1200 (w=3) 720 (w=5)

# Faces 10 (n=3) 24 (n=4) 32 (n=3) 96 (n=3) 720 (n=5) 1200 (n=3)

# Cells 5 (tetra) 8 (cube) 16 (tetra) 24 (octa) 120 (dodeca) 600 (tetra)



Figure 7:  Congruent Hamiltonian cycles on (a) the 4D simplex, (b) the cross polytope, (c) the tesseract.

Four Hamiltonian cycles are needed to cover the 24-Cell since all vertices are of valence 8. The most sym-
metric solution has the octahedral edge symmetry shown in Figure 8a. A rotation around any of the four
C3-axes leaves one color in place, while the other three colors are cyclically permuted for each rotation
step of 120°. The solution was found by considering separately the individual shells in this object and find-
ing colorings for them that adhere to the chosen overall symmetry scheme [5]. For each shell there were
only a rather finite number of possible solutions, and it was then just a matter of trying out combinations of
these shells that would connect all the edges of the same color into a single cycle. This dramatically
reduced the dimension of the search space. Figure 8c shows one isolated cycle in which all the edges are
colored differently according to the particular shell that they belong to.

Figure 8:  (a) Basic color scheme chosen; (b) four congruent Hamiltonian cycles on the 24-Cell; 
(c) a single cycle colored by the respective shells that each edge belongs to.

6.  The 600-Cell

The shell-based approach also helped us to find eventually a desired coloring of the 600-Cell. We analyzed
the perspective projections of this polytope by sorting all vertices into shells according to their distances
from the origin, and sorting all edges into either intra-shell edges (connecting vertices of the same shell),
or inter-shell edges (connecting two different shells). For the 600-Cell, we find that there are 15 discrete
shells. Eight of them have intra-shell edges. But they are relatively sparse; no shell has more than 12 edges.
In addition, there are 41 “connector shells”  that contain edges going from one vertex shell to a different
one; these shells have a maximum of 24 member edges. A complete table can be found in [5]. 

To maintain congruence among the six Hamiltonian cycles, we set up five transformations that copy
one prototype path into its five differently colored siblings so that we obtain different colors on the six
edges of the outermost tetrahedron. All the above edge-shells were analyzed separately as to all possible
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coloring patterns that are compatible with this chosen overall color symmetry. It turns out that the 24-edge
shells can be treated like two shells with 12 edges, since their respective edges cannot map into one another
under the chosen global coloring scheme. For each such shell of 12 edges we then have to assign two pro-
totype edges of one color, so that five differently colored copies of this pair can be placed without causing
any interference; we always find exactly12 different solutions.

The shell structure also shows an inside-outside symmetry, representing a point inversion symmetry at
the centroid of the original 4D object. We gambled (successfully) that the desired Hamiltonian cycle would
maintain this symmetry, which allowed us to cut in half the depth of our search tree for a viable path.

The search algorithm we used was a simple depth-first search on all option combinations of the differ-
ent shells. We began with the smallest, most constrained shells and progressively tried various option com-
binations on other shells to incrementally build up a viable Hamiltonian cycle. Two checks need to be
made in each such step. First, no node in the graph must ever admit more than two edges of the same color
(“color conflict” ). Second, we must determine whether adding the latest edge would prematurely create a
cycle (“ loop conflict” ), since the Hamiltonian cycle must only be closed with the very last edge added. For
the latter check, Daniel Chen implemented a union-find algorithm on a disjoint-set forest data structure.
All vertices are given a link pointer, which initially points to that same vertex. For each chain of connected
edges, there is a single representative vertex that points to itself. When we add an edge, we change the rep-
resentative of the net to which the first vertex belongs to the representative of the net of the second vertex,
and we record this change in a separate list for easy backtracking. Now loop conflicts are easily detected
when both vertices of a new edge reference the same representative vertex, and that move can then readily
be un-done.

7.  The 120-Cell

On the perspective projection of the 120-Cell with all valence-4 vertices, we needed to find two congruent
Hamiltonian cycles of length 600. This was an even harder task, because the search space was so much
deeper and there were fewer constraints from the differently colored sibling paths. The only way the two
complementary paths can transform into one another is by a point-mirror operation at the geometrical cen-
ter of the edge graph. Possible plane-mirror operations or C2 rotations are excluded, because they all map
some edges of the dodecahedron back onto themselves. Trying to reduce the depth of the search tree, we
looked for inherent symmetries that we might find in the prototype path itself. However, neither 3-fold nor
5-fold symmetry will be possible: Consider, for instance, the edges circling a pentagonal face around a
potential C5 symmetry axis. The only way to maintain 5-fold symmetry with a 2-color scheme would be to
make them all the same color. However, this would form a sub-cycle of length 5 – which is not allowed.

We can also rule out inside/outside (I/O) symmetry. To see that, we look at the central intra-layer in
vs7. These edges form 12 pentagons. These rings of odd count can neither be of just one color, nor of
strictly alternating colors. Thus there must be vertices where the edges going off to vertex shells vs5 and
vs9 respectively (see Table 2) will be of the same color, and others where they will be of different color.
The overall complementarity of opposite edges, together with I/O symmetry would force all these edge
pairs to be of different color; on the other hand, together with I/O anti-symmetry it would force them all to
be of equal color. But as we just saw, they cannot possibly be all of the same type; thus neither type of I/O
symmetry can exist. 

Table 2 shows the complete set of all edges in the various shells. However for the 120-Cell, the shell
approach is not so well suited. Some shells have up to 120 edges which need to be assigned to one of two
colors. There are simply too many possible combinations to enumerate them all! After trying many differ-
ent approaches, we finally achieved success with a mixed strategy. We tried to make the color assignments
on a shell by shell basis, but we constructed the shells on the fly, using a backtracking search on a per edge-
pair basis. This approach has the problem that on the last few shells to be colored, many of the assignments



were forced by the avoidance of color conflicts; however, these assignments often produced multiple
loops. The backtracking depth needed to undo these loop conflicts appeared to be very deep, and the search
never finished in a reasonable time (a few days). A modification to our strategy fixed this problem: When-
ever an edge reaches a vertex that already has an edge of the same color or two edges of the complement
color – which thus fixes the coloring of all the edges at that vertex – we make these assignment immedi-
ately, and recursively continue these forced paths, regardless of what shells these edges belong to. This
strategy discovers any “ forced”  loop formation at a much earlier stage, where a smaller backtracking effort
is sufficient to correct the situation. This turned out to be the crucial component of our approach! Now it
only takes a few seconds to find a solution. With that strategy we can find solutions even by processing the
edges in random order without concern what shells they are part of. However, the random approach takes
somewhat longer than the structured approach, and it does not work well on graphs of higher valence; thus
it does not find a solution for the 600-Cell in a reasonable amount of time.

Thus there is a suspicion that there may be millions of viable Hamiltonian cycles. We did one experiment
to obtain an idea what fraction of all colorings with no color conflicts might yield the desired pair of two
congruent cycles. The two largest shells with 120 edges, connecting vertex shells vs4 to vs5 and vs9 to
vs10, respectively, form twelve decagon-rings each. These rings can be colored in an alternating ABAB...
pattern. When we flip this pattern to the complementary BABA.... state, the resulting coloring is still legal,
but the connectivity of chains of same-colored edges is changed dramatically – most likely breaking some
loops and forming others. There are 4096 different combinations of the state of these 24 rings; it turned out
that when we started from a complete solution, 46 of these combinations also produced viable Hamiltonian
cycles.

Table 2: Shell and Connector Schedule for the 120-Cell

vs0 vs1 vs2 vs3 vs4 vs5 vs6 vs7 vs8 vs9 vs10 vs11 vs12 vs13 vs14

vs0 30

vs1 20 0

vs2 60 0

vs3 60 60

vs4 60 30

vs5 120 0

vs6 60 0

vs7 60 60

vs8 20 0

vs9 60 60 0

vs10 120 30

vs11 60 60

vs12 60 0

vs13 60 0

vs14 20 30



Figure 9:  Hamiltonian prototype paths (a) on the 600-Cell and (b) on the 120-Cell.

8.  Hamiltonian 2-Manifolds 

A Hamiltonian cycle can be understood as a closed contiguous 1-dimensional manifold that visits all the
zero-dimensional elements (vertices) of a given graph (or polyhedron). Stepping up from 3D to 4D, we
now consider what 2D-manifolds one can find that visit all the 1D-elements (edges) of a polytope. These
2D-manifolds may be closed “Hamiltonian shells”  that pass through all the given edges, or they may form
“Hamiltonian surfaces”  that have some borders, i.e., edges in which the surface terminates. Just as we tried
to find congruent sets of Hamiltonian cycles or paths that cover all edges uniformly (once or multiple
times), we now will try to find ways to cover all the faces of the 4D-polytopes uniformly with multiple
copies of such a Hamiltonian shell or surface. If the edges are of odd valence, i.e., if an odd number of 3D
cells is clustered around it, then the surface needs to have some borders in order to obtain single coverage.

On the 4D Simplex or 5-Cell all edges are of valence 3, we thus need to look for a surface with a bor-
der. Using five triangles, i.e., exactly half of the available facets, we can form a Moebius band with five
internal edges between the triangles and with a single border of length 5 forming a Hamiltonian cycle on
this polytope. To obtain full coverage, two such Hamiltonian surfaces can now be joined so that every edge
is an internal edge in one Moebius band and also part of the border of the other one (Fig.10a). If built with
translucent facets of two different colors, this makes a very attractive object.

On the Hypercube or Tesseract, the most natural and most symmetrical shell that visits all the edges
is a torus with four 4-sided segments. This torus dissects the 3D-“surface”  of the tesseract into two inter-
twined rings of four cubes each. It uses 16 out of the 24 square faces; thus we need three copies of the 3D
torus (at right angles to one another) to obtain a uniform double-coverage of all faces. Alternatively, we
can remove 4 square windows from this torus to obtain a Hamiltonian surface of genus 5 (Fig.10b). In the
4D polytope, two copies of this surface cover all faces exactly once.

The 4D Cross Polytope has edges of valence 4. We can form a borderless surface using 16 out of the
32 triangles. Euler’s formula: 24{ #E}  –8{ #V}  –16{ #F}  +2 = 2*genus, tells us that this 2-manifold should
have the topology of a torus. It dissects the 3D-“surface”  of the 16-Cell into two rings of eight tetrahedra.
Two copies of this Hamiltonian shell cover all 2D faces. Figure 10c shows a 3D model with S2 symmetry.

The 24-Cell has edges of valence 3. A closed shell that passes through all edges would have to com-
prise 64, i.e., 2/3 of all triangular faces. Euler’s formula: 96{ #E}  –24{ #V}  –64{ #F}  +2 = 10, yields a
genus of 5. Ideally this shell should partition the 24-Cell into two sets of twelve octahedra. To yield con-
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nectivity of genus 5, eight octahedra might serve as 3-way connectors, while the other four would just con-
tact two neighbors. Alternatively, 16 octahedra with the connectivity of a hypercube provide the most
symmetrical solution, but their combined surface is no longer truly manifold, since all vertices get touched
by that surface more than once. An alternative coverage might be obtained from a triangle strip closed into
a loop of 48 triangles, with two borders of length of 24 each. But again, all vertices will be touched more
than once by these borders. Work continues to find the most satisfactory solution.

Future work will also perform a similar analysis for the 120-Cell and for the 600-Cell with the goal of
finding the most symmetrical configurations of such Hamiltonian 2-manifolds.

Figure 10:  Some Hamiltonian 2-manifolds on (a) simplex, (b) hypercube, (c) cross polytope.
(Net templates for these objects can be found in an appendix to the electronic paper version)

9.  Conclusions

Our original goal was to find Hamiltonian cycles for all six regular 4D polytopes so that congruent copies
of them would yield complete edge coverage. Finding such cycles for the two most complex graphs relied
heavily on computer graphics visualization and even on physical models of the projections to 3D generated
on a rapid prototyping machine. Insight gained from these modeling efforts were crucial to finding a struc-
tured approach for the search of such cycles. We then extended the notion of a Hamiltonian cycle to
include 2-manifolds that contain all the edges of these graphs. Interesting new geometrical structures are
emerging from this quest. Trying to find the most symmetrical configuration is our general goal, but we
have little knowledge as to how close we have come to that goal in an absolute sense with our first emerg-
ing solutions for the three more complicated regular polytopes. When it comes to symmetry, many intrigu-
ing questions are still open.
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