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Abstract

The proof of the irrationality of {(5) is a long standing open problem. The present paper abandons a golden section
inspiration (as many artists may have done in their field), and suggests a different approach. Yet, it appears as vain
as the first one, though it does offer an opportunity to resuscitate interest in the topic, while an extra esthetic zeta-
formula is encountered concurrently.

1. £(2), (3) and the golden section.

Although a previous paper was at first sight but a summary of existing proofs for the irrationality of =,
1 1 1 1
In2, {(2)= 1+ >z + PER and {(3) = 1+ > + PO (see [2]), it was given the “Lester Ford Award 2002”

by the Mathematical Association of America, while some found an inspiration in it for a query about still
other famous mathematical constants, such as e and Euler’s constant (see [4]), and others continued their
computer search for similar constants (see [3]). To F. Beukers (see [1]), the reason for these reactions
was the lack of progress in this field at the time, and thus any sensible new impulse is meaningful.
Furthermore, there was a link to mathematical notions used more often in artistic circles, though not so
well known to pure number specialists: the golden section, noted ¢, T, g or Gau, and the silver and bronze
sections, Ga, and og,. They are the positive roots of x*-nx—1=0, for n=1, 2, 3..., and they emerged as
follows in the explained proofs.
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lead to a contradiction as ‘Rn a5 (3)| —0.

For £(3), 0 < for any neN, while M;=

n+1

) and (M;)"T,,, <(M;)".(3"")’ <1. Thus, the rationality of £(3) would

For £(4), it was expected the following expression had potential for attempting a proof (and its extension,
eventually, for £(5)):
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Indeed, the maximum M,=|(1/c4,)’| is attained for x=y=-1/64,, and Ms=|(1/0,)*| for x=y=-1/G4,, and now

the My-maximum is obtained for x=y=-1/cs,. However, the same paper also pointed out this option failed

since the integral is not of the form (R,,, +S,,,¢£(4))/T,,,. Thus, the golden-silver-bronze section

connection was misleading (partially - but this happened in art too: see references given in [2]).

2. Another approach for a C-irrationality proof.

An esthetic expression, based on the logic in the form of the integrand in the given proofs, seemed
promising to overcome some surprising difficulties of -irrationality proof attempts:
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Now, the proof could go by checking the following conjectures:
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For £(2), the proposal coincides with the well-known proof, while it can be shown suitable substitutions
transform the proposed {(3) integral into Beuker’s type. For {(4), the (very large) algebraic expression
for the maximum value M4 has no more relation to the bronze mean but, numerically at least, condition
(1) can be verified: M,.3%<1; that is a good start. Now some substitutions lead to:
P pxd=xyd-yzd-wid-wy" - pxA=x)00 - grd -nw—w))"
I —dx.dw = [ .. —
(1= xy)(1-xy2) (1 - xyzw)) (1-~grwx)

As in [1], it establishes the expression (E) for n=0, while the general expression now transforms into
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(II) M= max

with [M,.3"[<1.
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Already for n=1, it is seen that the numerator does not only contain terms in (qrw), j=0...n, yielding a
fraction times {(4), but other terms as well. That is, the above calculations only show that 0 <

R +#S0ad 3 +U ¢ (4)‘ — 0, for R, Sn, Un €Z. Thus, the only thing to remember from the present

paper may be the esthetic expression (E) for {(m), but, alas, the author did not have the nerve to check if
this expression deserves a proof, in despite of J. Sondow’s encouragement.
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