
     <1> = {1,6}
     <2> = {2,7}

     <1> = {2,3}
     <2> = {5,6}

Circular Distributions and Spectra Variations in Music

How Even Is Even?

Richard J. Krantz Jack Douthett
Department of Physics Department of Music
Metropolitan State College of Denver SUNY-Buffalo
Denver, CO  80217 Buffalo, NY  14221
krantzr@mscd.edu douthett@comcast.net

Dedication

This paper is dedicated to the memory of John Clough (1928-2004).  Without his participation
and encouragement much of this work and the work referenced herein might never have come to
fruition.   The field of mathematical music theory owes a great debt to John Clough.  The authors
are privileged to have known and worked with him.

1 Introduction

In this section we review some results on circular  distributions and the spectra associated with these
fascinating distributions.

1.1 Circular Distributions:  Consider the distribution of 8 dots, represented by small circles, spread out
equally  on  a  large  circle  as  shown in  Figure  1.   Previously;  Krantz,  Douthett,  and Clough [1]
considered the case of distributing 3 of the dots, represented by small filled circles, as evenly as
possible around the large circle.  They showed that the most even distribution, the “maximally even
distribution,” of 3-out-of-8 occurred when the average chord length between either the open or filled
circles was a maximum.  The maximally even distribution is shown in Figure 2.

        Fig. 1    Fig. 2

1.2 Spectra:    Superimposed on Figures 1 and 2 are the so-called spectra [1,2,3] associated with each
distribution.  The distances between dots, filled or open, is called a specific length.   The distance
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between filled dots (or open dots), only, is called a generic length.  For example, <1> represents the
set of specific lengths between near-neighbor, specific length <1>, filled points.  As seen in Figure 1
there are two such distances {1,6}.  <2> represents the set of specific distances between next-nearest
neighbor filled dots.  As shown in Figure 1, there are two such specific  lengths {2,7}.  For the
maximally even distribution, shown in Figure 2, the corresponding spectra are <1> = {2,3} and <2>
= {5,6}.

1.3 Another Example:  Consider the circular distributions shown in Figures 3 and 4.  It is clear from
these figures that the maximally even distribution is given in Figure 4.  

      

              Fig. 3                       Fig. 4

Notice that the spectra for the maximally even distribution all contain one specific length for each
generic length.  This is an example of a very general result.  It has been shown [4] that a maximally even
set is a set in which every spectrum consists of one, as in Figure 4, or two consecutive integers, as in
Figure 2.

2 Spectra Variations

A question arises in light of the examples shown in section 1:  “How can one compare the evenness of
circular  distributions  that  contain  different  numbers  of filled circles?”  That  is,  can we compare  the
evenness of the distributions shown in Figures 1-4 with each other or with the other, not shown, 3-out-of-
8 circular distributions and all possible 4-out-of-8 distributions?  More generally, can we compare the
evenness of all n-out-of-8 distributions?  
  
2.1 Simpler Example:  Shown in Figures 5 through 8 are the 4 distinct ways of choosing 2-out-of-8

dots around the circle.  Superimposed on each figure is the spectrum for each.
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          Fig. 7          Fig. 8

2.2  Spectra Width:  We define the width of the spectrum of a d-out-of-c circular distribution, written as
Δd

c(I), as the difference between the largest and smallest member of the spectrum I; that is:

Δd
c(I) = max <I> - min <I>             (1)

The spectra widths for Figures 5-8 are:  6, 4, 2, and 0 respectively.

If  we  consider  the  spectrum widths  of  our  3-out-of-8  example,  the  possibilities  up  to  rotation  and
inversion are shown in Figures 9 through 13:
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Superimposed on these figures are the spectrum widths associated with each distribution.

2.3  Spectra Variation:  We define the  spectra variation for each distribution as the average of the
spectra widths with respect to the number of filled dots:
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The spectra variations for Figures 9-13 are shown in Table 1.

Table 1.

Figure <1> <2> Δ3
8(1) Δ3

8(2) V3
8

9 {1,6} {2,7} 5 5 3.33 (10/3)

10 {1,2,5} {3,6,7} 4 4 2.33 (8/3)

11 {1,3,4} {4,5,7} 3 3 2.00 (6/3)

12 {2,4} {4,6} 2 2 1.33 (4/3)

13 {2,3} {5,6} 1 1 0.667 (2/3)
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We see  that  the larger the spectra  variation the less even the distribution.   Moreover,  the most  even
distribution, the maximally even distribution, has the smallest spectra variation and is less than one.

If we consider any exactly equal distribution, such as the one shown in Figure 4 or Figure 8, the spectra
variation is exactly zero.

2.4  Another Example:  The spectra variation allows us to compare the evenness of circular distributions
with different numbers of filled dots.  For example, consider the distributions shown in Figures 14 through
19.  For brevity we consider only maximally even sets as these have variations less than one compared to
all other distributions.
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Superimposed on each of these figures are the interval spectra and associated spectra variation.  Shown
in Table 2 are the distributions shown in Figures 14 through 19 ranked according to their spectra
variations. 

Table 2.

3 A Musical Example

We turn, now, to a musical example.  Most people are familiar with the scale of the white keys on the
piano, the so-called diatonic,  or major, scale.   Shown in Figure 20 is the diatonic scale as a circular
distribution.  The diatonic set is a maximally even set of 7-out-of-12 with a spectra variation of 6/7.
Superimposed on Figure 20 are the spectra widths, spectra variation, and the usual notes of the diatonic
scale.  

Two other common scales are the natural minor and the descending melodic minor both of which are
rotations of the diatonic scale.  Each is a rotation of diatonic scale three half-steps clockwise, as shown in
Figure 21.

     
        Diatonic Scale Natural Minor Scale (Descending) 
              Fig. 20                    Fig. 21

As each of these scales is a maximally even set, they all have spectra variations less than one and are the
most even 7-out-of-12 scales.
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Shown in Figure 22 is the next most even 7-out-of-12 scale, the ascending melodic minor with a spectra
variation of 8/7.  It is only one half-step away from being maximally even (D#  => E).
      

Ascending Melodic Minor
              Fig. 22

The two next most even 7-out-of-12 scales are the harmonic minor and whole-tone-plus-one scale, shown
in Figures 23 and 24 respectively.  Each has a spectra variation of 10/7.

Harmonic Minor    Whole-Tone-Plus-One
           Fig. 23    Fig. 24

 

 

 

 

Comparisons of the six most familiar  7-note scales  are those that  are most even as measured by the
spectra variation.  It is left  to the reader to show that all  other 7-out-of-12 circular distributions have
larger spectra variations than those shown above, some 2 or 3 times larger.



4  Summary

We  have  developed  the  spectra  variation  method  based  on  the,  well-known,  spectra  of  circular
distributions, which allows comparison of the evenness of different circular distributions.  The method is
developed using a simple n-out-of-8 example and then applied to the 7-out-of-12 distribution common in
Western music.  We show that the smaller the spectra variation the more even the distribution.  Ranking
the 7-out-of-12 scales according to the smallest spectra variations shows that the most common 7-note
scales in use are also those that are the most even.

5  Discussion

Clough  and  Myerson’s  work  [2,3]  dealt  with  the  mathematical  formalization  of  several  musical
properties.  One of these properties is known as Myhill Property (MP):  A set has MP if every interval
spectrum is a doubleton (consists  of two numbers).   In particular,  they focused on sets in which the
members of the spectra were integers.  Although their investigation was not related to evenness, they
established the ground work for Clough and Douthett’s [5] investigation on maximally even sets.

One class  of maximally  even sets  consists  of  sets  with MP in which each spectrum consists  of  two
consecutive integers  Musical scales in this class include the (black key) pentatonic and diatonic scales.
In addition, Clough and Douthett’s definition of maximally even sets allowed for sets in which some or
all spectra are singletons (consists of a single integer).  Musical sets with single integer spectra are the
augmented triad, the fully-diminished seventh chord, and the whole-tone scale.  The octatonic scale (also
known as the diminished scale) is an example of a set in which some spectra are singletons and others
consist of two consecutive integers.  While the musical examples given above are in the usual chromatic
universe of cardinality 12, Clough and Douthett’s work extended these properties to musical universes of
any size.  Measures that  justify the term “maximally even” can be found in Block and Douthett  [4],
Krantz, Douthett, and Clough [1]; and Douthett [6].

For any given chromatic and set cardinalities, Clough and Douthett identified a class of sets that were
maximally even.  They did not, however, discuss the comparative evenness of maximally even sets with
differing cardinalities.  For example, while both the diatonic scale and whole-tone scales are maximally
even, intuition suggests that the whole-tone scale is “more even” that the diatonic scale.   Indeed, the
pitches in a whole-tone scale are distributed totally evenly around the octave (an equal-tempered system).
We build on Clough’s work with both Myerson and Douthett and construct a measure that compares the
evenness of maximally even sets with differing cardinalities.  For maximally sets, our measure varies
between 0 and 1, including 0 but not 1.  The value of this measure for equal-tempered sets is 0, while
maximally even sets with MP measure closer to 1.  Sets which are not maximally even always measure
greater than or equal to 1.
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