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Abstract
The shape of a meandering river is approximated by a curve that has a particularly simple equation when expressed in
intrinsic coordinates. It is the same shape as the form taken by a strip of spring-steel constrained by bending forces at
its ends. These curves are easily generated using computer turtle graphics, as are some related forms. An extension
into three dimensions produces a range of sculptural forms, some of which correspond to existing works of art.

The Forms of Rivers
It is well known that a river flowing in a flat landscape does not take a straight path but follows a sinuous
curve, e.g. Figure 1, which changes over time. The form of this curve was studied in detail about forty
years ago by Luna Leopold [1]R who called it a "sine-generated" curve, since it has the equation

where a is a constant
ψ is the angle to the mean down-valley direction
s is distance measured along the curve.

This is an example of an intrinsic equation, so called because it does not relate to external coordinate
axes. In this form it uses a system introduced by Whewell, but it will be more convenient to use Cesáro's
system, which uses radius of curvature, ρ, rather than ψ.

The reciprocal of the radius, 1/ρ, is known as the curvature, κ.

Figure 1: The river Coquet at Swindon (near Rothbury), Northumberland.

The Elastic Curve
The sine-generated curve is actually an approximation to the "elastic curve", first described by James
Bernoulli, which is the form taken by a flat spring when acted on by forces at its ends (see Figure 2).
Eagles [2][gives an approximate method of construction using classical methods, but there is an easier
method using computer graphics.



Figure 2:  A distorted elastic curve illustrated by the remains of one of Jan Zach’s sculptures
(Windflower No.1).

Turtle Geometry
Many people will be familiar with turtle geometry from the programming language Logo (a public
domain version, MSW Logo, can be downloaded from the internet), widely used in elementary education,
although it can be implemented in almost any language. The basic commands are FORWARD (some
distance), and RIGHT and LEFT (turn by some angle). Since the commands are intrinsic to the turtle, and
do not refer to any external coordinate system, it is very easy to plot intrinsic equations using turtle
geometry. If, after moving forward by a small step of size δ s, the turtle turns by an angle δα radians, its
path can be seen as an arc of a circle with radius,ρ :
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Making the step size unity for simplicity, here is a Logo procedure for drawing a sine-generated curve:
TO MEANDER :a :b
make "s 0
repeat 10000 [fd 1   rt :a *(cos (:s/:b))    make "s :s + 1]
END
If the cos function takes a value in degrees one cycle will take 360 steps. The additional scaling
parameter, b, is needed for other sizes, or if the argument is in radians. In this case a convenient value is b
= 20·0535, which gives a cycle of 2� � 20·0535, which is approximately 126 steps. An equivalent in
another language needs a stored variable (the turtle heading) that is changed when the turtle turns. (See
Abelson and diSessa [3] for details on implementing turtle geometry in two and three dimensions.) As the
parameter, a, is increased the meander curve gets more tightly bent (Figure 3).

                                                  
Figure 3: Increasing the parameter of a meander (a = 0.57, 0.64, 0.686, 0.715, 0.775).

A curve of constant curvature is a circle, of course, and adding a constant, c, will bend the meander
around a circle (Figure 4). If we require the curve to close after one circuit it must complete a whole
number of cycles as it goes around, and the contribution to the total turn from the cosine term will be
zero. The added constant, c, is determined by the number of steps, for example for a curve with symmetry
order 5 there will be five cycles, and c = 0·2, if b = 1. If angles are in radians, with b = 20·0535, then c =
0·2/b = 0·09973, and the curve closes after 2π × 20·0535 × 5 = 630 steps

                    



Figure 4:  A circular meander of symmetry order 5 as the parameter increases

(a = 0.3, 0.4, 0.57, 0.715, 0.86).

An interesting variation occurs if the cos(s) term is replaced by
cos(s + cos(ks)), with k close to unity. (Again suitable scaling
parameters might be needed.) The whole meander curve itself
meanders, suggesting the possibility of self-similar meander
curves (Figure 5).

Figure 5: A modified meander suggesting the possibility of
self-similarity

a = 2.2   k = 0.991

Meanders in Three Dimensions
In three dimensions there are three types of turn: roll around the direction in which the turtle is heading,
yaw to left or right, and pitch up or down. Since we are not concerned with gravity there is no preferred
up direction, so yaw and pitch are equivalent. Most versions of Logo include the possibility of three
dimensional geometry but the better display available in VRML makes it worth writing scripts (in Java or
JavaScript) to generate an extrusion along a turtle path. Abelson and diSessa [3] pp. 140-144 explains
how to implement movement in three dimensions.
A sine-generated curve can be incorporated into a three dimensional space-curve in many ways. One of
the most interesting has a constant pitch (so constant curvature), with the roll defined by a cosine
function. A ribbon-like extrusion along this curve is a ruled surface of constant curvature.
The intrinsic equations of the curve are

,
where the curvature, κ, gives the pitch, and the torsion, τ, gives the roll. The constant curvature
parameter, c, will be called the bend, and the torsion parameter, a, the twist. As before b is a scaling
parameter.
Although things are more complicated than in two dimensions some of the same principles apply. If the
curve is to close, the turtle's intrinsic axes should have an unchanged orientation when it returns to the
start (although it might pass through the starting position several times before closing the curve). The roll
must complete a whole number of cycles, so, as before, with b = 20·0535 a curve with symmetry order 5
closes after approximately 630 steps. The total roll must be zero, so a ribbon along the curve is
topologically equivalent to a cylinder.
A meander curve in three dimensions is defined (to similarity) by two parameters, the bend and the twist,
and there is a range of possible space-curves as they vary. Considering only those curves with the same
symmetry, say order 5, is sufficient to understand the full range of curves, since the same principles apply
to curves of any symmetry, and any that does not close is arbitrarily close to one that does.
Begin by thinking about curves with twist = 0. They consist of some number of loops around a circle.
What happens if the twist is increased? (See Figure 6.) The loops begin to separate, and in Figure 6 begin



to curl inwards. The bend parameter needs to change to take account of this, but eventually the concave
parts of the curve cancel the convex parts and any further increase in the twist parameter leads to a curve
that cannot close after 630 steps, whatever the bend parameter.

Figure 6: Increasing the twist of a 3-D meander that starts with a 2 loop.

Figure 7: The 3-D meander from an 8 loop moves towards the same limit as twist increases. 

The same limiting case can arise starting with a different number of loops (Figure 7), allowing a smooth
trajectory between the two starting points.
Figure 8 shows the values of bend and twist that give curves with 5-symmetry. Notice that a circle with
five loops is equivalent to a single circuit, since each loop is identical, and it is a limiting case. It does not
close for any non-zero twist. The dotted lines correspond to space-curves where the concave and convex
parts exactly cancel, so they go to infinity (Figure 9). Curves on opposite sides of these lines have centres
of symmetry on opposite sides
. Figure 8: Values of bend
and twist that produce 3-D
meanders with 5-symmetry.
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Figure 9: Infinite 3-D meanders.
These looping curves have an obvious aesthetic appeal, and many variations are possible. Figure 10
illustrates how changing the width of the ribbon can significantly alter their appearance. It is not
surprising that some sculptors have produced works with similar features.

   

 
Figure 10: Changing the ribbon width of two 3-D meanders (not to scale).

Many pieces by Brent Collins [4][have the overall shape of 3-D meanders, but
usually the twist maintains the same sign rather than oscillating, so they are
not topological cylinders. His ribbon sculptures are exceptions [5], and
Figure 11, Pax Mundi (Figure 22 in [5]), is a particularly obvious example,
although it does not appear to be a ruled surface.

Figure 11: Pax Mundi, by Brent Collins.
Jan Zach's work [6][with stainless steel in the late 1960s inevitably expresses
elastic curves, since the steel automatically takes on these shapes, although

other forces are also at work, in particular gravity. Windflower No.1 (Figure 12) is a good example. 

     



               Figure 12: Windflower No.1 (1967).                       Figure 13: Flower of Freedom No.6 (1968).

In Flower of Freedom No.6 (Figure 13) the ribbon of steel has been cut into a more interesting shape, and
it is obviously constrained near the centre. This illustrates an important point. The computer generated
curves provide believable images of ribbons, but in reality an unconstrained ribbon of any elasticity will
spring back to a circular cylinder.

Figure 14 shows Jan Zach manipulating one of his
sculptures, and the impression is very similar to some
computer-generated images that use wide ribbons.

Figure 14: Continuous Shape (1968).

All the images of Jan Zach's work are reproduced by
kind permission of Hallie Ford Museum of Art.
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