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Abstract 

This introduction to the tiling properties of the Tangram focuses upon the property called Preciousness. It continues 
with examples of the unique way in which they can produce an infinite number of tiling patterns. It explains the iterative 
nature of the process as applied to designs in two and three dimensions. Summaries of the Geometric properties and 
Artistic examples are included. 

1. Introduction 
This work follows on from previous work on Precious Triangles [4], [5]. The idea of Preciousness 
has been expanded to include polygons. This paper concentrates upon the tiles forming the 
Tangram. Most people will be familiar with the standard Tangram puzzle. The origins of the 
Tangram are uncertain, but it was popular in China. There is evidence of similar tiles being around 
in Babylon around 2000 B.C. [1] . Archimedes is credited with a similar puzzle around 250 B.C. 
[2]. Tangram tiles can be cut from a square as indicated in figrire 1. The usual rules are that all 
seven tiles should be used and they should touch but not overlap another tile Some examples can 
be seen in figure 1. Many others can be found on the internet. [3]. 

Figure 1: The normal arrangement for Tangram tiles and some examples of Tangram 
designs. 
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2. What are Precious Polygons. 
Precious Polygons are sets of different polygons which can be used to form other sets of similar 
polygons. A process similar to that of Solomon Golomb's Rep-tiles [7] but involving sets of 
polygons rather than a single polygon. We shall see later that this will allow us to create an infinite 
series of designs. A number of such sets with the property have been identified. One of these is 
the set that forms the Tangram square shown in figure 1. 

3. Precious Polygons from the Tangram. 

There are five different polygons that form the tangram square in figure 1: three triangles, one 
square and a parallelogram. Figure 2 shows a scheme whereby each of the original polygons can 
combine together to form a similar but larger version of the original set. It can be quite easily 
shown that each large version is.J2 larger than the original [4],[5]. This enlargement factor must 
be a constant for the set to be Precious and is known as the Precious Ratio. Now that we have a 
Precious set then we can take any design made from the original Tangram shapes and produce a 
larger version using the scheme in figure 2. Since we end up with a design using only the original 
shapes we can repeat the process ad infmitum. Each successive design is larger than the previous 
one by a factor of ..fi. Figure 3 shows the development of the series of designs based upon the 
Magician. 

~becomes 

Figure 3: The first seven of an infinite number of Magicians 

becomes 

.Precious Polygons 
forming a Tangram. 
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4 Some Interesting Ratios 

An interesting aspect of Precious properties of the Tangram tiles is that, no matter how many of 
each tile in the original design, after a few generations you always end up with the same 
proportion of each type. It can be shown that the proportion of each approaches 7/18 for tile A, 
2/9 for B, 2/9 for C, 1/18 for the square and 119 for the parallelogram. A proof for this can be found 
at refl 4]. The more generations there are, the closer this becomes. 

5 Artwork in Two Dimensions 

The simplest type of two dimensional artwork is the standard Tangram design and the generation 
of a series each being .J2 times larger than the one before (see figure 3). The second, called 
selective transformation, is a similar process but not all the polygons are transformed. The third 
is the creation of a mosaic using the Tangram shapes as tiles. 

6 Selective Transformation 

In this example, square D, once it is created, is not transformed (see figure 2). In figure 4 the 
polygons of the fish design are transformed as normal, except for the square which contains a 
picture of sterling currency instead of being transformed. Details of generation 0 and generation 
2 are shown in the bottom left and top right of figure 4. 

Generation 2 

Generation 0 

Figu .. 4: "The English Dream" - A fractal featuring a a series of preda~~AY 
fish each eyeing up the others for dinner including the smallest at the top. 
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7' Mosaics 

The third type is the creation of a mosaic from the design. An example of this is a series of 13 
mosaics I have called "Scenes from a Forgotten Hamlet". As a starting point I used one of the 13 
convex polygons [8] that can be made from the seven Tangram tiles. These mosaics are designed 
to cover an AO size area. 

Figure 5: "The Backings" - A group of mosaics from the series "Scenes from a forgotten 
Hamlet" which are designed to fit AO (The large white rectangle is an enlargement of the 

. small rectangle 

8 Artwork in Three Dimensions 
I have used a method that I have called Tilation. Tilation is the placing of tiles within the 

boundaries of a polygon, but not necessarily in the 'plane of the polygon. This is a similar process 
to stellation. Figure 6 shows the tilation of equilateral triangles. The ones on the left are triangular 
based pyramids, the ones on the right form a concave arrangement and don't fully cover the 
triangle, that is, there is a hole in the middle. Each tilation can have concave and convex forms. 
Once we have a three dimensional tilation we can develop other generations using the methods 
developed in two dimensions. 

Figure 6: Two ways to tilate an equilateral triangle, each showing 4 generations. 
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9. General Properties of Three Dimensional Designs 

The linear dimensions of each successive generation is .J2 times larger than the previous 
generation. The surface area of each successive design is, therefore, double that of the previous 
generation. Ifthey are constructed from the same material then each one is also double the weight 
of the previous generation. It can be shown [4] that the weight of the largest approaches the 
weight of the sum of the previous generations as the number of generations increases. 

10. Examples Using the Equ.ilateral Triangle 

Figures 7 and 8 illustrate the regular growth patterns 
r----------------., for successive generations of tilated equilateral 

Figure i: Two Logarithmic Spirals us­
ing tilated equilateral triangles 

triangles, each being .J2 times larger than the one 

Figure .. 8: A study in 3D using tilated 
equilateral triangles 

11. Tilation of the Squ.are and Pentagon. 

There are many ways of tilating the square and pentagon. Those illustrated here are attractive in 
their own right. r--------------------------------------, 
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Figure 11: Two examples of a pentagon tilation, 

Figure 12: The first six generations of a pentagon tilation 
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11 Tilation of the Platonic Solids 

The tilation of the equilateral triangle, the square and the pentagon allows the tilation of the five 
platonic solids 

Figure 14: The seri~s of tilated stars formed into a mobile 
which illustrates that each is double the weight of the previous 

generation. 

12 Tilation for Other 
Objects. 

We saw, in section 9, that the 
weight of each generation of 
design is double that of the 
previous one. This leads to 
the weight of each generation 
getting closer to the total 
weight of all previous 
generations. Figure 14 shows 
a mobile where each 
generation balances all the 
previous ones. The mobiles 
was based upon a six pointed 
star. The largest star was 
600mm. across. 
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13 The Hodthorpe Chess Pieces 

Figure 15: The first two generations of the Hodthorpe 
Chess pieces. 

14. References 

The tilation of a shape is useful 
since we end up with a number 
of 3D elements that have a 
common interface. This allows 
them to be fitted together to fonn 
more complex solids. This is a 
bit like the docking of various 

. parts of the space station which 
rely upon a defined interface to 
connect them. As an example of 
this figure 15 shows two sets of 
the Hodthorpe Chess Pieces. 
These are based upon the tilation 
of the equilateral triangle. From 
the first design an infinite 
number of designs can be 

generated, each being .J2 times 
larger than the previous one. 
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