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Abstract 

In this paper, we present a method to create a new class of polyhedra. All the faces of these polyhedra are bounded 
by smooth (quadratic B-spline) curves and the face boundaries are Cl discontinuous everywhere. These polyhedral shapes 
are limit surfaces of a generalized vertex truncation subdivision scheme. We obtain an approximation of these smooth and 
fractal polyhedra by iteratively applying a new vertex truncation scheme to an initial manifold mesh. Our vertex 
truncation scheme is based on Chaikin's construction. If the initial manifold mesh is a polyhedra only with planar faces 
and 3-valent vertices, in each iteration we construct a polyhedral mesh in which all faces are planar and every vertex is 3-
valent, 

1. Introduction 

One of the most exciting as~ects of shape modeling and sculpting is the development of new algorithms 
and methods to create unusual, interesting and aesthetically pleasing shapes. Recent advances in computer 
graphics, shape modeling and mathematics help the imagination of contemporary mathematicians, artists 
and architects to design new and unusual 3D forms [11]. In this paper, we present such an unusual class 
of polyhedra that are contradictorily interesting, i.e. they are smooth but yet Cl discontinuous. To create 
these shapes we apply a polyhedral truncation algorithm based on Chaikin's scheme to any initial 
manifold mesh. Figure 1 shows two shapes that are created by using our approach. 

Figure 1: Two examples of smooth-fractal polyhedra that are created by our system .. 
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2. Background 

One of the most notable artists of the last century, Escher, frequently applied mathematical concepts to 
create drawings of unusual 3D forms [6]. With the advance of computer graphics, many artists have 
begun to use mathematics as a tool to create revolutionary forms of artworks. There currently exist many 
contemporary artists such as George Hart [8], Helaman Ferguson [7], Bathsheba Grossman [9], Brent 
Collins and Carlo Sequin [20] who successfully combines art and mathematics to create' unusual 
sculptures. These mathematical sculptors, who have a very noticeable presence in today's art scene, 
develop their own methods to model, prototype and fabricate an extraordinary variety of shapes. 

Unusual shapes are especially interesting for architectural design. Interestingly shaped architectural 
structures are symbols of cities, regions, states, and even countries. In fact, recent advances in computer 
graphics and shape modeling help the imagination of contemporary architects to design new forms [11]. 
One most notable contemporary example of interestingly shaped buildings that have become symbols is 
Frank Gehry's Guggenheim Museum. The Museum, with its stunning titanium-clad forms, has been 
credited with vitalizing 'an entire city and region of Spain. 

One of the major mathematical approaches to design unusual shapes is Fractal geometry. As told by 
Mandelbrot [12], Fractal geometry is often described as a "New Form of Art". Mandelbrot not only does 
not reject this idea, but he supports it by saying that "[with fractal geometry] all we do deal with is a new 
form of the controversial but ancient theme that all graphical representations of mathematical concepts are 
a form of art." Fractal geometry also introduced many new 3D forms such as Sierpinsky tetrahedron, 
Menger sponge, 3D subsets of 4D quaternion Julia and Mandelbrot sets. Shortly after their introduction 
by Mandelbrot, fractals have been widely used in contemporary architectural design. A large number of 
international architects such as Peter Eisenmann, Greg Lynn, Asymptote, Charles Correa, Coop 
Himmelblau, Carlos Ferrater, Arata Isozaki, Charles Jencks, Morphosis, and Eric Owen Moss have 
produced fractal rich contemporary architectural designs [1,10,14,15,16,17]. We can add some other 
designers like Karl Chu [22,13] who are concerned with genetic algorithms like L-systems or cellular 
automata. Architecture researchers also discovered that even before introduction of fractals, there exist 
many architectural examples that are rich in fractal aspects like facade environment relation in some 
vernacular dwellings [4], plan layouts and mass structures in the styles of mode.rnistic architects such as 
Frank Lloyd Wwright, Mies Van Der Rohe [15] . 

Our 3D forms are closely related one of the earliest known 2D fractal forms called Leibnitz packing of a 
circle (which themselves are a special case of an earlier form called Apollonian nets and gaskets) [12]. 
According. to Mandelbrot, Leibnitz described it in a letter saying that "Imagine a circle; inscribe within 
it three other circles congruent to each other and of maximum radius; proceed similarly within 
each of these circles and within each interval between them, and imagine' that the process continues 
to infinity ••• " Our operations convert each vertex of an initial polyhedron to a 3D form which looks 
similar to Leibnitz packing. 

3. Methodology 

Shape construction algorithms of fractal geometry are often given by a set of rules that are applied to an 
initial shape (see [3]). The problem with these shape construction algorithms is that they are hard to 
generalize. Each algorithm approaches its target shape regardless of the shape of the initial object. These 
algorithms do not aliow construction of different target shapes from different initial shapes. Subdivision 
schemes provide a fresh alternative to fractal construction algorithms. They are conceptually similar to 
fractal constructions, i.e., they are also given by a set of rules that are applied to an initial shape. 

( 
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However, the subdivision schemes have three advantages: (1) their underlying rules (remeshing schemes) 
are mesh topological in nature, (2) the rules can simply be applied to any manifold polygonal mesh, (3) 
the limit shapes depend on initial shapes. In this paper, we presents a subdivision scheme that can create 
unusually interesting shapes when it is successively applied to any manifold meshes, especially, to planar 
faced polyhedra in which all vertices 3-valent. Our subdivision scheme is a variant of polyhedral vertex 
truncation scheme. 

3.1. Polyhedral Vertex Truncation. 

Vertex truncation scheme is commonly used in Archimedean polyhedra construction [23]. Vertex 
truncation simply cuts each vertex with a planar surface. Mesh topological (remeshing) effect of vertex 
trun,cation is shown in Figure 2. As seen from this figure, after the application of a vertex truncation 
scheme, (1) each polygon with n number of sides converts to a polygon with 2n number of sides; (2) 
each vertex with valence m becomes a polygon with m number of sides; and (3) all the new vertices 
become 3-valent. In addition to these topological conditions, the polyhedral vertex truncation must satisfy 
one geometric condition: every initial and newly created polygonal face must be an equilateral and planar 
[23]. If the polyhedral vertex truncation is applied successively, because of the geometric condition each 
face eventually becomes a circle. And moreover the limit polyhedra closely resemble Leibnitz packing (in 
this case, the circles are not in the same plane). 

Figure 2: Remeshing effect of vertex truncation. 

Although, the surface of the limit shape is not fractal, the edges of limit polyhedra show fractal property. 
Note that a shape is fractal if its Hausdorf-Besicovitch (or fractal) dimension is not an integer (This 
condition is sufficient but not necessary, i.e. a shape can be a fractal even when its fractal dimension is an 
integer)[12]. To compute fractal dimension, we need to find out how much the length of the edges is 
scaled, S, and how many more edges, N, are needed in each step. Then, the fractal dimension, D is 
computed as 

In(N) 

D=~ 

when the number of the sides of largest polygon goes to 00. Using the fact that in each iteration a regular n 
sided polygon goes to a regular 2n sided polygon, we can find that the length of the edges is scaled by 

1 

where n is the number of the sides of the largest polygon. Although, this number is not constant, note that 
when n goes to 00, S approaches a constant 

s 
n~oo 2 
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Note that after the first iteration, all vertices become 3-valent and in each iteration th~ number of vertices 
increases by 3. In manifold surfaces in which every vertex is 3-valent, the following relationship exists 
between the number of vertices and edges: 

3Vk = 2Ek (1) 

In this equation, vk and Ek are the number of vertices and edges in iteration k respectively. Since, in each 

iteration the number of vertices increases by 2, the number of edges must also increase by 3 to satisfy the 
equation 1. IIi other word, N approaches 3. As a result, the dimension of polyhedral edges is found to be a 
non-integer 

In(N) , In(3) 

D = InV,) = In(2) = 1.5849; 

this number is the same as the dimension of Sierpinsky triangle. 

3.2. New Vertex Truncation Scheme. 

There are two problems using polyhedral vertex truncation to create smooth fractal polyhedra: (1) Initial 
polyhedra that can be used for such an operation are extremely limited: Platonic polyhedra and ~ome 
Archimedean polyhedra. (2) Polyhedral vertex truncation scheme is not stationary, i.e. it changes with 
each iteration. To solve these problems we simply adapt Chaikin's algorithm [19,24] to vertex truncation. 
We use Chaikin's algorithm to determine the positions of the new vertices after a cut operation, i.e., we 
cut each line from 114 and 3/4. Figure 3 shows five iterations of this scheme when it is applied to uniform 
tetrahedron. Figure 4 shows the effect of five iterations of the scheme when it is applied to uniform cube­
and dodecahedron respectively. 

Figure 3: A tetrahedron and 5 successive vertex truncation operations applied to the tetrahedron. 

Al A2 A3 Bl B2 

Figure 4: AI, A2 and A3 are a cube and two views of its smooth fractal polyhedra that are created by 5 
successive operation of vertex truncation. B 1 is a dodecahedron and B2 is its smooth fractal 
counterpart created by 5 iterations of vertex truncation. 
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Unlike polyhedral vertex truncation, with this scheme, the faces, in the limit, do not go to circles; Chaikin 
algorithm approaches quadratic B-splines [19,24] and parametric polynomials cannot represent circles 
[2]. Similar to polyhedral vertex truncation, we can show that the dimension of the edges will also be 
D=1.5849. Comparing to polyhedral vertex truncation, this new vertex truncation scheme has several 
advantages. It is stationary and simple to implement. Moreover, the scheme is robust, i.e. it can be applied 
to any manifold mesh. 

Although, the new scheme can be applied to any manifold mesh, if each face of initial mesh is planar and 
each vertex is 3-valent, then in each iteration we construct only planar faced polyhedral meshes, which 
can be very useful for Architectural applications. Initial 3-valent vertex condition guarantees that newly 
created faces after, ftrst application of the vertex truncation are planar faces. But, this is not necessary 
condition, i.e. for some special planar polyhedra such as regular octahedron and icosahedron as shown in 
Figure 5, the scheme still creates planar faces even with valence other-than-3 vertices. (Since all the 
vertices are 3-valent after the first iteration, each face created after second iteration is automatically 
planar.) To create interesting polyhedra with planar faces, the initial faces have to be planar, but they not 
have to be uniform. They can have any shape, e.g. stars and other non-convex shapes. The Figure 6 shows 
two such examples. 

Q) (ty (jJ 
Al A2 Bl B2 

Figure 5: Al is an octahedron and A2 is its 5 times vertex truncated version. Bl and B2 are an 
icosahedron and its 5 times vertex truncated counterpart. Notice that the faces are still planar 
despite the fact that 4-valent and 5-valence vertices of octahedra and icosahedra respectively. 

If the initial meshes do not have only planar faces and 3-valent vertices, some faces of the constructed 
polygonal mesh may not be planar. The problem with such non-planar faces is that they may not be 
meaningfully reconstructed during rendering process. The problem cali be. theoretically worse during 
hardware rendering, but, as it can be seen in the screen-shot images shown in Figure 7, these non-planar 
faces with curved boundaries can be acceptably rendered (On the other hand, one of the bilinear 
quadrilateral faces of the deformed cube in Figure 7 do not look like a quadrilateral because of the 
triangulization in rendering stage). To build a real solid shape, the non-planar faces with curved 
boundaries need to be reconstructed by using a boundary interpolating subdivision scheme [24]. 

Al A2 Bl B2 



122 2004 Bridges Proceedings 

Figure 6: Al is a non-convex polyhedron with non-convex planar faces and A2 is its 5 times vertex 
truncated counterpart. B 1 is another non-convex polyhedron with non-convex planar faces and 
B2 is its 5 times vertex truncated version. 

Al A2 Bl B2 Cl C2 

Figure 7: AI' and A2 are a deformed cube with non-planar faces and its 4 times vertex truncated version. 
Bl is a genus-l shape with 4 valent-5 vertices that cause to construct non-planar faces in thefITst 
iteration and B2 is its 4 tilnes vertex truncated version. Cl and C2 are a shape that is created by 
connecting eight space-packing polyhedra, truncated octahedron, and its 4 times vertex truncated 
version. 

4. Implementation 

The algorithm above is implemented and included in' our existing 2-manifold mesh modeling system, 
TopMod, [21] as an option. Our system is implemented in C++ and OpenGL, FLTK. All the examples in 
this paper were created using this system. 

An unexpected usage of this approach is modeling walls that are made up stone as seen in Figure 8.D. To 
create such stone walls, we first subdivide a planar face into a set of-polygons with valence-3 vertices (see 
Figure 8.A) and applied a few iteration of vertex cutting algorithm (see 
Figure 8.B). Then, using standard extrusion operation, we extrude each rounded face a few times with 
decreasing amount scaling and translation (see Figure 8.C). , 

A B C D 

Figure 8: A stone wall created by using our approach. 
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5. Conclusion 

In this paper, we presented a new class of polyhedra. All the faces of these polyhedra are planes that are 
bounded by quadratic B-spline curves and the face boundaries are C1 discontinuous everywhere. These 
polyhedral shapes are limit surfaces of a simple subdivision algorithm that truncates the vertices. We 
obtain an approximation of these smooth fractal polyhedra by iteratively applying this new vertex 
truncation scheme to an initial manifold mesh. Our vertex truncation scheme is based on Chaikin's 
construction. If the initial manifold mesh is a polyhedron only with planar faces and 3-valent vertices, in 
each iteration we construct a polyhedral mesh in which all faces are planar and every vertex is 3-valent, 
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