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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

A simplified version of information processing in the brain minimally requires cortex and limbic pro­
cessing modules. In this paper, we discuss how to construct training data for auditory and visual cortex 
models using a 17th century construction technique called a Wiirfelspiel matrix. Traditionally, this was 
used to develop many equally valid musical compositions for use as templates on which the actual com­
position of the musician would be based. For example, a musician would compose 10 openings, 10 
transitions and 10 closings which would be fitted into a 10 x 3 matrix. From this a total of 103 musical 
prototypes could rapidly be assembled by combining an entry from column 0 to one from column 1 and 
then ending with an entry from column 2. The artistry of the musician was essentially captured in the 30 
fragments which could be combined in such a combinatorial fashion. This idea can be used to develop 
musical data for use in training a model of auditory cortex. In addition, the notion of Wiirfelspiel ma­
trices can be extended to the design of painting data for use in the training of the visual cortex. In this 
paper, we discuss how these specialized training sets provide us with the data to construct interesting 
cortical models which can eventually be used to create models of musical and painting composition. In 
addition, since the data can be generated with different emotional modalities, there is also a potential for 
building limbic processing modules. 

1 Introduction 

In a sequence of seminal papers ([9], [2]) and [3]), it has been shown that people respond to emotionally 
tagged or affective images in a semi-quantitative manner. Human volunteers were shown various images 
and their physiological responses were recorded in two ways. One was a skin galvanic response and the 
other an fMRI parameter. Hence, each image could be plotted on a two dimensional grid using the skin 
galvanic response as the horizontal axis and the fMRI response as the vertical component. Images with 
violent! sexual content ( extreme images) were always found to generate a response placing them far from 
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Figure 1: Music Data Matrix 

the origin of this coordinate system while neutral 
images such as those of an infant generated null 
or near origin results. Clearly, the emotional tags 
associated with these affective images were not 
cleanly separated into primary emotions such as 
anger. sadness and happiness. However, we can 
infer that the center (Null, Null) state was associ­
ated with images that have no emotional tag. Also, 
the images did cleanly map to distinct 2D locations 
on the grid when the emotional contents of the im­

ages differed. Hence, we will assume that if a database of images separated into states of anger, sadness, 
happiness and neutrality were presented to human subjects, we would see a similar separation of response. 
Using these ideas, we will design auditory (musical) and visual (painting) data for happy, sad, angry and 
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emotionally neutral states. In the 1700's, fragments of music could be rapidly prototyped by using a ma­
trix A of possibilities called a Wfufelspiel matrix. We show an abstract version of a typical Musicalisches 
Wiirfelspiel matrix in Figure 1. It consists of P rows and three columns. In the first column are placed the 
opening phrases (nouns); in the third column, the closing phrases (objects); and in the second column; the 
transitional phrases (verbs). Each phrase consisted of L beats and the composer's duty was to make sure that 
any opening, transitional and closing (or noun, verb and object) was both viable and pleasing for the musical 
style chosen. We will modify the Wiirfelspielmatrix idea to generate both emotionally labeled musical and 
painting data to allow us to train a model of auditory cortex and visual cortex which can then be used to 
train a model of associative cortex to be used for sensor fusion. 

2 Auditory Data 

In the literature, there are many attempts to model musical compositional designs. A theorist such as 
(Caplin, [1]) discusses music in terms of large chunks or sections and overall function, while (Davie, [5]) 
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Figure 2: Music Data 

discusses the matter of function from the opposite direction; 
small units building up to larger ones. It is very convenient 
to think of the structure of the Wfufelspiel matrix shown in 
Equation 1 in terms of a traditional sentence structure by 
equating opening phrases to nouns, middle phrases to verbs 
and closing or cadence phrases to objects. Our full reasons 
for this choice of a grammatical infrastructure as well as our 
guiding principles for the generation of data matrices for neu­
tral, happy, sad and angry music are detailed in ([6] and [7]). 
In the neutral music case, we use simple compositional pat­
terns and ideas that are expressible using only quarter and half 
notes. Further, we do not want the musical fragments to be 
too long, so for now each fragment consists of four beats in 
4/4 time. We will begin opening phrases and end closing or 
cadence phrases on tonic C, approaching or leaving by step 
or tonic chord leap. Finally, the middle phrases are centered 
around a third or a fifth. Now the last note in each of four 
opening phrases must be able to be played right before any 

of the first notes in a middle phrase. Correct combinations are not random choices and so the musical 
composer's skill is captured to some extent in the choices that are made for the middle phrases. Thus, our 
opening data gives four examples of starting notes for neutral musical twelve note sequences. Now there 
are nine possible start notes for each opening phrase and the fact that we do not choose some of them is 
important. Also, each four note sequence in any of the three phrases, opening, middle and closing, is or­
der dependent. Given a note in any phrase, the selection of the next note that follows is not random. The 
actual note sequence that appears in each phrase also gives sample data that constrains the phrase to phrase 
transformations. We can use this information to effectively approximate our mappings using excitation! 
inhibition neurally inspired architectures. Roughly speaking, if a given subset of notes are good choices to 
follow another note, then the notes not selected to follow should be actively inhibited while the acceptable 
notes should be actively encouraged or enhanced in their activity. 

To illustrate how these data samples might look, we show neutral music nouns and verbs are shown in 
Figure 2(a). The complete neutral Wiirfelspiel matrix would add the objects as well and would consist off our 
rows and three columns providing a total of 64 distinct musical fragments that are intended to model neutral 
musical sentence design. To generate musical data matrices with emotionallabelings, the underlying goal in 
building each matrix was to remain as basic as possible. We therefore decided to work within a monophonic 
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texture; i.e. melody line only. Note values were restricted to quarter notes and half notes in quadruple 
meter. Quarterrests were also allowed, but used sparingly. All four matrices (neutral, happy, sad, angry) 
are structurally similar. Each consists of three columns with four fragment choices that are one measure 
in length. Any fragment from column one from any of the matrices is designed to function as an opening 
phrase. Note, in neutral music, we define a tonic center in the opening phrase, but in emotional music such 
as perceived as angry, our goal is to make the tonic center vague. Hence, we mayor may not choose to start 
on a tonic center. For example, in the first opening in the angry matrix of Figure 3, we start on an A-flat. 
All fragments in column two of any of the matrices are then designed to function as a transition phrase. 
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Figure 3: Angry Music Matrix 

As the label implies, these transition phrases serve as 
connectors between a choice from column one and a 
choice from column three. It is in these middle phrases 
that movement away from the tonic is made or contin­
ued. This movement is necessary for forward progress 
of a melody. Therefore, each transition phrase is now 
highlighting a secondary pitch, one other than the tonic 
note established by the opening phrase. To close our 
melodic lines, an ending phrase is chosen. Any frag­
ment from column three of any of the matrices will 
function in the same manner. We designed each to move 
back to the tonic note in such a way as to produce a qual­
ity of closure to our melodic lines. To produce emotion-
deprived or neutral fragments, individual characteristics 

that have been documented by researchers as being contributing factors of basic emotion in music have been 
neutralized. Further, we use even rhythms and exact note durations in the neutral context. Fragments in­
tended to be emotionally tagged as happy had individual characteristics which entail choosing a major mode, 
a very quick tempo of 250 and the use of staccato. The verbs of a typical happy matrix are displayed in Fig­
ure 2(b). Fragments tagged as sad use a minor mode with a slow tempo of 70 along with slurs, legato and 
using the bass clef to put us in a lower register. To emotionally tag fragments as angry, we use a minor mode, 
a moderate tempo of 180, faster than used for the sad melodies, but slightly slower than the tempo used for 
the happy melodies with increased variation of articulation (slurs, accents). There are also more repeated 
notes and the use of an ambiguous fragment where the mode is not clearly established in opening phrase. 
The musical data uses a rich set of notes and articulation attached to the notes to construct grammatical 
objects. We can think of the added articulation as punctuation marks as slurs (one note and multiple note), 
staccato and marcato accents are attached to various notes in our examples to add emotional quality. Our 
design alphabet can be encoded as 1t = {c, d, e, j, 9, a, b, r} where each note in this alphabet is now 
thought of as a musical object with a set of defining characteristics. Here r is rest. For our purposes, the 
attributes of a note are choices from a small set of possibilities from the list A = {p, b, s, a}. The index p 
indicates what pitch we are using for the note; the letter b tells us how many beats the note is held; the length 
of the slur is given by the value of s; and a denotes the type of articulation used on the note. A given note 
n is thus a collection which can be denoted by np,b,s,a where the attributes take on any of there allowable 
values. Our alphabet is thus 1t which has cardinality 8. Each letter has a finite set of associated attributes 
and each opening, middle or closing phrase is thus a sequence of4 musical entities. A typical angry music 
matrix is shown in Figure 3. 

3 Visual Data Inormalsize 

A basic organizational plan of the human brain is presented in Figure 4. Auditory input goes to area 41 
in the parietal cortex and visual input is sent to area 17 in the occipital cortex. This primary information 
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is processed further by areas 7 and 42 and areas 18 and 19 in the parietal and occipital cortex, respec­
tively. The results of this processing are sent to the temporal cortex through areas· 20, 21, 22 and finally 37. 

Pariebll 

Ocdpfll 

Area 37 is where sensory information from 
multiple modalities is fused into higher level 
constructs. The top boundary of area 17 in 
the occipital cortex is marked by a fold in 
the sUrface of the brain called the lunate sul­
cus. This sulcus occurs much higher in a 
primate such as a chimpanzee. Effectively, 
human like brains have been reorganized so 
that the percentage of cortex allotted to vi­
sion has been reduced. Comparative stud­
ies show that the human area 17 is 121% 
smaller than it should be if its size was pro-
portionate to other primates. The lost por-

Figure 4: Brain Cortical Subdivisions tion of area 17 has been reallocated to area 
7 of the parietal cortex. There are special 

areas in each cortex that are devoted to secondary processirig of primary sensory information and which 
are not connected directly to output pathways. These areas are called associative cortex and are primarily 
defined by function, not a special cell structure. In the parietal cortex, the association areas are 5 and 7; 
in the temporal cortex, areas 20, 21, 22 and 37; and in the frontal, areas 6 and 8. Hence, human brains 
have evolved to increase the amount of associative cortex available for what can be considered symbolic 
processing needs. Our ability to process symbolic information is thus probably due to changes in the human 
brain that have occurred over evolutionary time. It is noted in [8], that the increase in associative parietal 
cortex in area 7 probably occurred approximately 3 million years ago. Therefore, the capability of symbolic 
reasoning probably steadily evolved even though the concrete evidence of cave art and so forth does not 
occur until really quite recently. However, our point is that the creation of 'art' is intimately tied up with 
the symbolic processing capabilities that must underlie any model of cognition. The creation of appropriate 
sets of visual data is therefore essential to the training of a cognitive model. Our painting model uses a com­
positional scheme in which a valid painting is constructed by three layers: background (BG), midground 
(MG) and foreground (FG). A painting is assembled by first displaying the BG, then overlaying the MG 
which occludes some portions of the BG image and finally adding the FG image. The final FG layer hides 
any portions of the previous layers that lie underneath it. This simplistic scheme captures in broad detail the 
physical process of painting. When we start a painting, we know that if we paint the foreground images first, 
it will be technically difficult and aesthetically displeasing to paint midground and background images after 
the foreground. A classical example is painting a detailed tree in the foreground and then realizing that we 
still have to paint the sky. The brush strokes in the paint medium will inevitably show wrong directions if 
we do this, because we can not perform graceful side to side, long brush strokes since the facial foreground 
image is already there. Hence, a painter organizes the compositional design into abstract physical layers 
- roughly speaking, organized with the background to foreground layers corresponding to how far these 
elements are away from the viewer's eye. ,-

Consider the two paintings, Figure 5(a) and Figure 5(b), which have fairly standard compositional de­
signs. Each was painted starting with the background and then successive layers of detail were added one 
at a time. As usual, the design elements farthest from the viewer's eye are painted first. The other layers are 
then assembled in a farthest to nearest order. The painting seen in Figure 5(a) started with the background. 
This used a gradient of blue, ranging from very dark, almost black, at the bottom, to very light, almost 
white, at the top. There are, of course, many different shades and hues of blue as brushes are used to create 
interesting blending effects with the various blues that are used. However, we could abstract the background 
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to a simple blue background and capture the basic compositional design element. The many kelp plants are 
all painted in different planes. The kelp farthest from the viewer are very dark to indicate distance, while 
the plants closest to the viewer use brighter greens with variegated hues. We note that we could abstract 
the full detail of the kelp into several intermediate midground layers: perhaps, the farthest midground 
layer might be one kelp plant that is colored in dark green with the second, closest midground layer, 

a bright green kelp plant. The human figure 
is placed between kelp layers, so we can cap­
ture this compositional design element by plac­
ing a third midground layer between the two 
midground kelp plant layers. Finally, there are 
many seadragons in foreground layers at vari­
ous distances from the viewer. We could sim­
plify this to a single foreground layer with one 
seadragon painted in a bright red. Hence, the 
abstract compositional design of the painting 
in Figure 5(a) is as shown in Figure 6(a). In 
a similar fashion, we can analyze Figure 5(b). 
The background in this painting is a large col­
lection of softly defined trees. These are de­
liberately not sharply defined so that they seem 

(a) Painting One (b) Painting Two to be far from the viewer. We can abstract this 
compositional design as shown in Figure 6(b). 

Figure 5: Two Paintings The midground image is the very large tree that 
runs from the bottom to the top of the painting. 

There are then two more midground images: the whimsical dragon figure on the tree branch and the human 
figure positioned in front of the tree. Finally, there are a large number of Baltimore butterflies and Luna 
moths which are essentially foreground images. 

Layer Description Layer Description 
Background One Blue gradient; dark to light Background One Fuzzy brown trees 
Midground One Very dark green kelp plant Midground One Large tree (brighter browns) 
Midground Two Human figure Midground Two Dragon (red) 
Midground Three Bright green kelp plant Midground Three Human figure 
Foreground Bright red sea dragon Foreground Butterfly (black); moth (green) 

(a) Abstract Seadragons Design (b) Abstract Tree Painting Design 

Figure 6: Abstract Painting Designs 

The paintings shown in Figure 5(a) and Figure 5(b) are much more complicated than the simple abstract 
designs. However, we can capture the essence of the compositional deJlign in these tables. We note that, 
in principle, a simpler description in terms of one background, one midground and one foreground is also 
possible. For example, we could redo the abstract designs of Figure 5(a) and Figure 5(b) as shown in Figure 
7(a) and Figure 7(b). These new designs do not capture as much of the full complexity of the paintings as 
before, but we believe they do still provide the essential details. Our simple painting model is thus based on 
Wiirfelspiel matrices similar to those used in music compositions with a painting (BG, MG, FG) constructed 
to give the overall impression of a given emotional state. 
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Layer Description Layer Description 
Background Blue gradient; dark green kelp Background Fuzzy brown trees 
Midground Human figure; bright green kelp Midground Large tree; dragon 
Foreground Bright red sea dragon Foreground Human figure; butterfly; moth 

(a) The Three Element Abstract Seadragons Design (b) The Three Element Abstract Tree Painting Design 

Figure 7: Three Layer Abstractions 

The Wiirfelspiel matrix we obtain from four kinds of neutral background, midground and foreground images 
is shown in Figure 8(a) and a happy matrix constructed in the same way is shown in Figure 8(b). Our abstract 
painting compositions can be encoded as the triple {b, m, J} where b denotes the background, m, the 
midground and f the foreground layer, respectively. Each of these layers is then modeled with a collection 
of graphical objects with the following attributes: inside color, Ci; boundary color, Cb; and a boundary curve, 
an, described as an ordered array { (Xi, Yi) } of position coordinates. We can then use this alphabet to encode 
WUrfelspiel painting matrices into data for use in training the visual cortex of the cognitive model. 

4 Conclusions 

It follows from the discussion in Section , that a reasonable sensor fusion model will require models 
of cortical processing. For example, in [10], it is noted that the first layer of auditory cortex is bathed 
in an environment where sound is chunked or batched into pieces of 200 mS length which is the ap­
proximate size of the phonemes of a person's native language. Hence, the first layer of cortex develops 

, circuitry specialized to this time constant. The sec-
ond layer of cortex then naturally develops a chunk 
size focus that is substantially larger, perhaps on the or­
der of 1000 mS to 10000 mS . As processing is fur­
ther removed from the auditory cortex via mylenated 
pathways, additional meta level concepts (tied to even 
longer time constants) are developed. We will there­
fore model auditory and visual cortex with three layers 
based on cortical models proposed in [12]. Our third 
layer of cortex is then an abstraction of the additional 
anatomical layers of cortex as well as appropriate myle-
nated pathways which conduct upper layer processing 

(a) A Neutral (b) A Happy results to other cognitive modules. We will use the mu-
Matrix Matrix sical data to imprint the first two layers of our model of 

auditory cortex and the painting data to imprint the first 
Figure 8: The Neutral and Happy Matrix two layers of our visual cortex models. The first step in 

building our models is to use the musical and painting 
to constrain or "train" a model of the associative cortex. In general, our model takes this specialized sensory 
input and generates a high level output. The musical data provides the kind of associated output that might 
come from area 37 of the temporal cortex. The low level inputs that start the creation of a music phrase cor­
respond to the auditory sensory inputs into area 41 of the parietal cortex which are then processed through 
areas 5, 7 and 42 before being sent to the further associative level processing in the temporal cortex. The 
painting data then provides a similar kind of associated input into area 37 froin the occipital cortex. Inputs 
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that create the paintings correspond to tlre visual sensory inputs into area 17 of the occipital cortex which 
are then further processed by area 18 and 19 before being sent to the temporal cortex for additional higher 
level processing. The musical and painting data are currently being used to generate models of composi­
tional design for music and painting and more general models of cognition. High level details of the cortical 
modeling process are presented in [11]. 
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from the Division' of Biological Infrastructure; Biological Databases and Bioinformatics. Further, we thank 
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