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Abstract 

From antiquity humanity has sought through scientific enquiry a rational explanation of nature. All art­
works were considered an imitation of nature, the same purpose has pervaded the history of the arts. The 
Pythagoreans were the first to put into mathematical terms the rules for aesthetics, borrowing them from 
music [1]. Later there arose the concepts of eurhythmy or commodulation: the application of rhythmical 
movements or harmonious proportions in a piece of music; a painting; a sculpture; a building; a dance. 
Throughout the Middle Ages, mathematical ideas of proportion lived side by side with the body of artistic 
activity, but during the Renaissance, the natural sciences and mathematics began a process of separation 
from the arts, both theoretically as well as in practical terms [2]. One of the reasons for the divorce was 
that all efforts failed to give a rational basis to the rOle played by numerical proportions in the aesthetics 
of an artwork. This l~k of scientific rationale caused a rejection of works on numerical proportion in aes­
thetics by the scientific community, which began to consider writings in this area esoteric and unscientific. 
The divergence between arts and sciences grew wider in the twentieth century, with the end of the last 
movements retaining'the ancient mathematical roots of art: neoclassicism and cubism. From this point 
on, the tendency of artists has been to consider that the mathematical design of an artwork implies an 
unacceptable constraint to creativity. If, in the future, the gulf between arts and sciences is to be reduced, 
this may come about through being able to understand in an objective fashion the phenomena that take 
place in our perceptual and nervous systems when we look at a painting [3], or listen to music. Some 
of these phenomena may be rooted in the fundamental rOle in the theory of nonlinear dynamical systems 
played by a particular number: the golden mean. 

1. The golden mean in art and science 

There exist many scientific, technical, and even esoteric writings about the use of the golden section, if! = 
(1 + ..;5)/2 = 1.618 ... , and its companion rP = 1/if! = if! -1 = 0.618 ... in art [4,5]. There also exists a 
similar tradition regarding its rOle in science and technology [6, 7]. The number and some of its numerical 
properties were certainly known to the Greeks [8], and it was possibly the key to the Pythagorean discovery 
of irrational numbers through its geometrical application to the pentagram. Kepler described <b as one of 
the 'jewels of geometry', while Leonardo da Vinci illustrated the book about if! by Luca Pacioli, with whom 
da Vmci studied mathematics, which Pacioli entitled De Divina Proportione [9]. The name of golden mean, 
golden section, or golden number, however, may have first been ascribed to it in the 19th century [10]-

The golden ratio if! is found frequently in nature - in phyllotaxis, sea shells, seed heads, etc. - to what 
do we owe this ubiquity? The ancient Greeks argued for a mathematical description of the world, and that 
numbers - the branch of mathematics now known as number theory - describe all things in the universe. 
They developed a theory of proportions as an explanation for our aesthetic perception of the universe and 
as a guide for the work of artists. A proportion is the equality of at least two ratios: r = alb = cld_ This 
is termed a discrete proportion because the four elements are distinct. If two elements of the proportion 
coincide, the proportion becomes continuous. For example, if b = c, the proportion reads r = alb = bid, 
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Table 1: Names and frequency ratios of the currently accepted harmonic intervals in Western music in descending order of conso­
nance. 

Unison Invariant 111 Fifth Invariant 213 Major Sixth Variable 3/5 Minor Third Variable 516 
Octave Invariant 112 Fourth Mixed 3/4 Major Third Variable 4/5 Minor Sixth Variable 5/8 

which has the solution b = .;;;;i, r = ..;ara, when b is known as the geometric mean of a and d. We can 
further simplify the proportion by making one element dependent on the other two. Given d = a + b, so the 
ratio of the smaller part a to the larger part b is the same as the ratio of the larger part b to the whole a + b, we 
obtain only two possibilities for r: c/J = (y'5 - 1)/2 = 0.618 ... , and -Cb = -(1 + .../5)/2 = -1.618 ... ; 
this is the geometric definition of the golden section. 

In art, the appropriate links between proportions of the parts and the whole gives to the artwork the 
quality of eurhythmy. Eurhythmy is currently more generally associated with arts that work in the time 
dimension, such as music or dance, but in antiquity it was used equally for the arts working with the spatial 
dimensions, such as painting, sculpture or architecture. Many artists have attempted to develop a parallelism 
between figurative and non-figurative arts; the writing of da Vinci on music and painting is famous. We 
can find such projects in modem painting also. Gino Severini, for example, tried to put musical rules into 
visual terms, while Paul Klee held, as did Goethe, that colour may be managed through a general theory 
of composition in the same way that sound is managed through the framework of musical theory: a sort 
of synthesis like that obtained in the works of Bach or Mozart. Less clear, however, is the contrary: the 
translation of visual aesthetics to the musical world [5, 11]. 

Western science was born with the Pythagoreans, who developed the first mathematical model of a phys­
ical problem. This starting point also coincides with the start of rational studies of music, because the 
Pythagoreans developed a musical theory: that of harmonic musical intervals. Legend tells how Pythagoras 
entered a smithy and heard the noise of hammers of different masses working a great piece of incandescent 
iron. Some of the hammers striking simultaneously produced harmonious sounds. This motivated Pythago­
ras . to study musical harmony with different tuneable instruments. In this way he identified at least the 
principal harmonic musical intervals: the unison, the octave, the perfect fifth and the fourth. His principal 
observation was that some simple numerical relationships defined these intervals (see Table 1 for the list of 
harmonic intervals currently accepted in Western music). Of course these numbers depend on the physical 
variables. chosen to represent the sounds, but in time it emerged that the fundamental magnitude related to 
harmony is frequency. Fortunately, many numerological approaches maintain their validity because they 
work with the lengths of strings, since ratios obtained with these lengths are just the inverse of frequency 
ratios (a string fixed at both ends oscillates at a fundamental frequency inversely proportional to its length). 
Pythagorean ratios were quickly utilized for the construction of a musical theory. This musical theory was 
based fundamentally on the construction of a musical scale: the Pythagorean musical scale. 

2. The need for musical scales 

As a first approximation we can say that any frequency can be assigned a pitch, that is, a comparative 
sensation that allows us to say that a sound is higher or deeper than another. However, because there is a 
continuum of frequencies in any finite interval, there is an infinity of possible pitches. We should point out a 
couple of caveats: first, pitch can be ascribed directly to frequency only for pure tones (sounds that contain 
only.one frequency in their spectrum), and for a definite intensity; second, the ear does not have an infinite 
resolving power, and thus two pure tones sufficiently close in their frequencies are judged to be of the same 
pitch. However, the resolving power is sufficiently high to be considered a continuum for the frequency 
values of the notes in any practical musical scale. For example, a semitone is given by a distance of 100 
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cents in the equal-tempered scale of twelve notes - there being 1200 cents in an octave - but the ear can 
distinguish a substantially lesser interval: the just noticeable difference limen is as little as three to four cents 
at 1000 Hz. What then is the need for musical scales? A practical demonstration cannot give us the complete 
answer but can convince us of the practical necessity of a discretization of the octave into notes. If we take 
a known melody and replace the interval between notes by a continuum glissando the melody loses all its 
musical attractiveness and can become unidentifiable, despite the existence of the fixed frequency clues of 
the limit of the original intervals. This problem has long been recognized in practical terms and also, by the 
Pythagorean· school at least, in theoretical terms. 

The Pythagorean scale can be obtained by successive applications, ascending or descending from a tonic, 
of the interval of the perfect fifth. The notes obtained in this way must be replaced by their octave equivalents 
in order to have all the notes in the same octave. The Pythagorean process, however, has a problem because 
it never ends: an integer number of fifths never coincides with any other integer number of octaves; in 
number-theoretical terms, the problem is that 2x = 3Y has no solutions if x and y are integers. The essence 
of the Pythagorean scale is the preservation of harmonic intervals, mainly the fifth and the octave. From 
Pythagoras up to the present day, many musical scales have been developed that try to accommodate the 
desire for harmonic intervals with the reality that they do not fit within the octave, the most important being 
the equal-tempered scale of twelve notes. Equal-tempered scales are defined by irrational numbers, and do 
not exactly preserve any of the harmonic. intervals of Table 1 except for the octave, but, for some particular 
number of notes, they approximate them. 

3. The golden scales 

The construction of a musical scale is then a problem involving approximating irrational numbers by ratio­
nals. The mathematical technique to obtain the best such approximations is well known, and consists of 
writing the irrational number as a continued fraction [12]. The golden mean <P has the continued-fraction 
expansion 

V5-1 1 
<P - - ----:,---

- 2 - 1+ 1 
1 

1+--
1+ ... 

and the best rational approximations to <P are given by the convergents of this infinite continued fraction, 
arrived at by cutting it off at different levels in the expansion: 1/1, 1/2,2/3,3/5,5/8, 8/13, and so on; the 
convergents of the golden mean are ratios of successive Fibonacci numbers. 

Most musical scales are discretizations of the octave. The octave interval is such that the sensations pro­
duced by two notes separated by an octave are very similar, and harmonious when sounded simultaneously. 
This is independent of cultural roots or specific musical training, and is a shared characteristic that seems 
to be linked to human physiology. As the octave is an interval defined by the first and second convergents 
1/1 and 1/2 of the golden number, we can attempt to construct a scale by continuing the series, adding the 
succeeding convergent of the golden mean 2/3. The choice of a note x in the octave interval (1/2,1) sat­
isfies the minimal condition to have a proportion: we have three elements (1/2, x, 1) that define two ratios, 
a = 1/(2x) and b = x. However, the introduction of this rational number, 2/3, breaks the symmetry of the 
interval because there are now two ratios defined, a = (1/2)/(2/3) = 3/4 and b = (2/3)/1 = 2/3. This 
is to say that there is a hidden solution that corresponds to the permutation of the intervals. If we equate the 
two ratios, a = b, this gives for x the geometric mean of 1/2 and 1: x = Vf12. For the geometric mean 
the two ratios are equal; for the rational 2/3 there is one interval greater than the other and the permutation 
corresponds to the exchange of these. If we include this hidden solution, 3/4, we reestablish the symmetry 
as if a mirror were placed at the geometric mean (see Fig. 1). This palindromic character for a musical scale 
was first proposed by Newton in his notebooks written between 1664 and 1666. Newton pursued this idea 
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lIZ Z/3 3/4 111 

Figure 1: The octave interval. defined by the notes of frequency 1/2. the tonic. and 1/1. its superior octave. is divided by its 
geometric mean J172 as shawn. The interval is defined by the }irst two convergents of the golden number. 1/1 and 1/2. to 
which we have added the next convergent. 2/3. However. this breaks the symmetry of the scale. There exists another solution 
which consists of the permutation of the shart and long intervals defined by 2/3. i.e. 3/4. This solution can be viewed as that 
symmetric to 2/3 through the symmetry axis J1ii. Symmetry is meant herein the Greek sense. that is. as an equality of ratios. 

i.e. (2/3)/ J172 = J172/(3/4). Ifwe take logarithms of all quantities the symmetry becomes the usual sort and the geometric 

mean. J1ii. can be viewed as a mirror. 

further and presented in Opticks [13] the visible optical spectrum divided into ratios corresponding to those 
of a musical scale, with the divisions in the form of a palindrome. 

At this point we can generalize our procedure. For this it is sufficient to notice that the first note included, 
the new rational approximant to the golden mean, creates a new interval, (1/2,2/3), which, as before, can 
be divided by a geometric mean which, in turn, can be approximated by a rational that corresponds to the 
succeeding approximant of the golden mean. This choice breaks the symmetry, which can be reestablished 
through the image of this approximant in the geometric mean mirror of this interval Vf/3, and further, its 
image in the previous mirror ..jffi.. At the next level - including the convergent 3/5 - this construction 
gives us a pentatonic golden scale; C (1/2), DU (3/5), F (2/3), G (3/4), A (5/6), and C (1/1). 

Now we need only a rule for proceeding in the subdivision of the interval: the maximum and minimum 
values for the intervals between successive notes. We can see in Fig. 2a, which shows the procedure per­
formed until the third level (including the convergent 5/8), that all the intervals except one fall in a band 
determined by the ratios between convergents of the golden number. The greatest interval is that including 
the first geometric mean ..jffi.. If we seek to subdivide this interval further we find that there is no rational 
solution that preserves the palindromy inside the band. Thus the unique possible choice is the irrational geo­
metric mean itself. This is curious, because we are forced to choose a note that is essentially different to the 
others, having an irrational interval. The scale at which we have arrived consists of twelve notes; the same 
number of notes as has the equal-tempered scale now in use (see Fig. 2b). Moreover, the golden scale con­
struction has generated all the harmonic intervals currently accepted by Western music (Table 1). Because 
of the equal numbers of notes, we can give the same names to the golden scale notes as their equal-tempered 
counterparts and compare their dispersion; see Table 2. It is intriguing that the irrational note corresponds 
to the interval C to FU, which has long been a problem in musical theory because of its ambiguity: being 
difficult to define as consonant or dissonant. Because of this it has been named the 'diabolus in musica'; in 
our construction it is certainly an irrational devil! 

In Fig. 3 we have calculated the mean quadratic dispersion as a function of the number of notes for an 
arbitrary equal-tempered scale. This is an indication of how well the harmonic intervals listed in Table 1 
are simultaneously approximated by· a given scale. We find a marked minimum at twelve notes, and in 
order to better this the number of notes must rise to nineteen. Contrary to what one might naively expect, 
simply raising the number of notes or, equivalently, diminishing the interval between adjacent notes, does 
not automatically achieve a better approximation to the harmonic interVals. As a consequence, the number 
of notes of an equal-tempered scale must be determined by this condition and cannot be arbitrarily chosen. 
In Fig. 3 we can see that the function also has a significant minimum for thirty-four notes, and if we continue 
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Figure 2: (a) The golden scale construction developed until the fifth convergent Cs = 5/8 (upper panel), and the intervals between 
adjacent notes (lower panel). We can see that the intervals are distributed in a band. Jfwe take as a rule that the intervals cannot 
be greater than the quotient ofconvergents Cn-2/Cn+1, in this case es/ce = (2/3)/(8/13) = 13/12 = 1.08, or less than that of 
the convergentsCn/Cn_l, here es/C4 = (5/8)/(3/5) = 25/24 = 1.04, wefind that the anomalous interval 1.13, between 2/3 and 
3/4, must be subdivided once. However there is no solution to this problem in roti01llll numbers, because the inclusion of a rational 
number and its image generotes at least one interval less than 1.04. The only possibility is thus to include the irrational axis .J112 
itself. (b) The result of including the irroti01llll axis. We can see that all the intervals are now within the previously defined band. As 
the number of notes coincides with the number of notes of the usual equal-tempered scale of twelve notes, we have given the same 
names to the notes of this golden scale. 

the construction of the golden scale one step further. we find a scale with thirty-four notes. Our golden scale 
construction, then, provides scales with optimal numbers of notes to best preserve the harmonic intervals. 

In axiomatic terms, the construction of the order n scale from the order n - 1 scale can be summarized 
thus: first, include the next convergent of the golden section, en. Construct the geometric mean of the interval 
( Cn-l , Cn) and its reflections in the previous geometric mean mirrors. Include all the possible reflections of 
the convergents obtained up to this point in the geometric mean mirrors, following the rule that an interval 
may not be greater than Cn-2/Cn+1, nor less than Cn/Cn-l (these ratios are to be inverted depending on 
whether n is odd or even, so that they are always greater than one). If an interval remains too large after 
including all possible rationals, then it must be subdivided by the irrational geometric mean until the rule is 
satisfied. The completed scale should be palindromic. There is very little that is arbitrary in the construction 
of these scales: everything comes given by just one number, the golden section. The original notes are 
convergents of the golden section, the admissible intervals are quotients of convergents of the golden section, 
and the symmetry axes are geometric means between neighbouring convergents of the golden section. With 
the exception of the first in the series, the pentatonic golden scale, the golden scales are not just, with all 
intervals rational, but neither are they equal-tempered, with all intervals irrational. As they include both 
rational and irrational intervals, we may term them mixed scales. 

4. Can our senses be viewed as generic nonllnear systems? 

We have shown that we can construct meaningful musical scales based solely on number-theoretical proper­
ties of the continued fraction development of the golden number and its convergents. But is the rOle of the 
golden number in musical aesthetics a coincidence? 

The development of dynamical systems theory is changing our view about nonlinear phenomena in 
nature. We have mentioned the cultural hypothesis which considers that the role of the golden number in 
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Thble 2: Comparison of the notes of the twelve-note equal-tempered scale with those of the golden scale with the same nulnber of 
notes. 

Note Equal-Tempered Twelve-Note Difference Difference 
Scale (Hz) Golden Scale (Hz) (%) (cents) 

Cs Dos 4186.00 4186.00 0.00 0.0 
C" 001 4434.92 4465.07 0.68 -11.7 
D Re 4698.64 4651.11 -1.01 17_6 
DI Rei 4978.03 5023.20 0.90 -15.6 
E Mi 5274.04 5232.50 -0.78 13.7 
F Pa 5587.65 5583.33 -0.11 2.0 
pi Pa' 5919.90 5919.90 0.00 0.0 
G Sol 6270.96 6279.00 0.12 -2.0 
G' Sol' 6644.87 6697.60 0.79 -13.7 
A La 7040.00 6976.67 -0.89 15.6 
A' La' 7458.62 7534.80 1.02 -17.6 
B Si 7902.13 7848.75 -0.68 11.7 
Cg DOg 8372.00 8372.00 0.00 0.0 

aesthetics is due to the ubiquity of this number in natural phenomena. It is now clear that in many cases this 
role in natural phenomena is due to underlying dynamical mechanisms [14]. Number theory in general, and 
certain numbers such as the golden number in particular, play important parts in the dynamics of nonlinear 
systeIDS [15, 16]. To give just one example, patterns seen in phyllotaxis and in the generation of Fibonacci 
spirals have been reproduced in a dynamics experiment on the organization of ferrofluid drops in a silicone 
oil [17]. 

Musical scales are constructed around musical intervals, which may be consonant or dissonant (Table 1). 
Here we must be careful to distinguish the concept of musical consonance from that of psychoacoustical 
consonance [18]; psychoacoustical consonance makes use of the idea of roughness, but many observations 
about the consonance of musical intervals cannot be explained on those grounds. The first to put forward an 
explanation for musical consonance was Rameau [19]. In his theory of harmony, Rameau assumed that mu­
sical chords conveyed information about a fundamental sound: a bass note representing the tonal meaning of 
the chord. Related ideas are Rieman's aural subharmonics [20], and those that have their origins in Tartini's 
third tone [21]. More recently, Terhardt gave fresh impetus to the theory of fundamental bass, proposing that 
the psycho acoustical phenomenon of virtual or residue pitch may be ascribed to it [22]. However, Terhardt's 
ideas lack a clear connection between the physical parameters of the sound and the virtual pitch response. 
Except for von Helmholtz's ideas on virtual pitch [23], which make use of combination tones, other theories 
of the phenomenon show the same lack of physical significance. Recently we proposed. a new theory of 
residue perception, based on nonlinear dynamics [24, 25]. Following the line of reasoning of Terhardt, this 
becomes ipso facto a physical explanation for musical consonance. Our theory is basect on a type of dynam­
ical attractor termed a three-frequency resonance. These resonances are hierarchically organized following 
rules borrowed from number theory and confirmed through simulation and experiment [16]. In this hierar­
chical ordering, a central part is played by the generalization of a number-theoretical operation known as 
the Farey sum, which also plays a central role in the organization of synchronized responses in periodically 
forced oscillators [15]. There, the Farey sum leads to a privileged role for the golden section. 

We propose that following our theory of residue perception, musical consonance may be explained in 
physical terms. The auditory system is a very complex and highly nonlinear dynamical system, so we expect 
that universal dynamical attractors may convey a perceptual and functional meaning in neural processing. 
Universal dynamical attractors of interest for pitch perception, that is three-frequency resonances, are orga­
nized by means of a number-theoretical operation,the generalized Farey sum, which implies a privileged 
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Figure 3: Mean quadratic dispersion 0' as a function of the number of notes in an equal-tempered scale. This number is the square 
of the difference between the note of the equal-tempered scale that best approximates each harmonic interval, multiplied by the 
relative weight of each interval and summed over all the intervals. The weights of the intervals are set such that the fifth weighs 
more than the fourth, which weighs more than the major third and major sixth, which weigh more than the minor third and minor 
sixth. 0' is then an indication of the degree to which a given equal-tempered scale approximates all the harmonic intervals of Table 1. 
There is a marked minimum for the usual twelve-note scale which coincides with the number of notes of the golden scale (the fifth 
convergent of the golden number). To obtain a better value, the number of notes must rise to nineteen. The two following minima 
are at thirty·one and thirty10ur notes, and the latter value coincides with the number of notes of the golden scale developed until 
the sixth convergent of the golden number, 8/13. 

rOle for the golden section in their hierarchical organization. The part the golden section plays in the hierar­
chical organization of musical intervals, outlined in this paper, may then be a consequence of the dynamical 
ordering pointed out above at the level of neural processing in the auditory system. A final hypothesis can be 
proposed: the tonal meaning and the relative consonance of a musical chord may be described by the stability 
of a dynamical attractor which represents the residue pitch. This idea is quantitatively testable,. because this 
stability can be measured through different dynamical indicators. 

Our theory for the pitch perception of complex sounds by the human auditory system demonstrates that 
the auditory system's response to musical sounds is compatible with the universal response of a nonlinear 
dynamical system to such stimuli. Because neuronal networks are very complex dynamical systems, this is 
not such an unexpected result. It may be on this basis that the presence of the golden number in musical aes­
thetics can be explained: harmonic intervals are another manifestation of the universal nonlinear behaviour 
associated with pitch perception. The same phenomena may occur at the level of the visual system. be­
cause object identification appears to correspond physiologically to synchronization of neuron populations 
to a given frequency [26]. The presence of different elements in an image might be then detected through 
different neuronal groups that synchronize to different frequencies. And this returns us to the premise of 
our theory: the nonlinear interaction of two or more frequencies produces resonances that are hierarchically 
arranged in a manner described by the golden mean. Thus, the more recent results take us nearer to the more 
ancient theories, to the Pythagorean dogma that all the universe is described by numbers and rhythms [1] -­
in modem terms number theory and dynamics - and that nature is from all points of view similar to itself 
- in modem terms universality. We may conclude with the words of the Gothic architect Jean Vignot on the 
continuation of the work on Milan cathedral in 1392: "Ars sine scientia nihil est", 
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