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Abstract 

In the rendering of strange attractors a number of methods are outlined how the element of time can be used. Time 
can be represented as the number of times a mapped location is selected or when the location is selected. A variety 
of coloring schemes based on the concept of time are also discussed. The other aspect time serves is the ability to 
visually suggest three-dimensional surfaces within two-dimensional strange attractors. This last effect enables 
strange attractors to be artistically presented in a manner that adds dynamic properties and ghostly interiors to static 
images. The added third dimension suggests surfaces that visually want to be logically followed but can never be. 

1. Introduction 

Clifford Pickover [1] extended some of his previous writings on three-dimensional chaotic or strange 
attractors [2,3] by including a series of two-dimensional attractors based on a simple equation consisting 
of sine functions. What was intriguing about these images was the variations possible by the execution of 
a simple iterative mapping with minor changes in parameters. The visual complexity of detail within the 
image and the visual perception of a third-dimension as the curves began to suggest surfaces became the 
starting point for development. Figure 1 displays two such attractors based on Equation 1 [4]. 

Xt+l = sin(bYt) + c sin(bxt) 
Yt+l = sin(axt) + d sin(aYt) 

~ ~ 

Figure 1: Pickover's strange attractors 
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(Equation 1) 



This single equation generated one image in which the mapped points begin to uncover a ghostly 
interior, while a second set of parameters generated two separate areas of attraction from which curving 
lines emulate. Pickover includes another eight images based on the same equation and a few others based 
on variations to Equation 1. The symmetry exhibited in these images can also be found in other equations 
he developed. Pickover [2,3] also discusses rendering issues of three-dimensional attractors. Some of 
these methods of shading and representing time are again included [1] but in more detail. 

Based on the work of Pickover and the same method of rendering, Joel [5] suggested other similar 
equations and transformations, such as, rotation, mirroring, and scaling. A very extensive study of 
attractors was performed by Sprott [6]. He covers the basics of computing attractors, a dictionary of 
possible equations and parameters, and the study of thousands, if not millions, of attractors. He includes 
one, two, three, and four-dimensional attractors, as well as, a. number of methods of visualizing them, 
such as, shadows, coloring schemes, stereo pairs, slicing, and projections. 

2. Time and Density 

Pickover [1] noted that an attractor could result in three possible cases: it will converge to a fixed point, it 
will enter into a repeating succession of values, or it will exhibit chaos and gradually fill some complex 
region. Paul Bourke demonstrates this by creating a set of what he calls "swirling tendrils" [7]. He uses 
Equation 2 to generate a series of images. This equation he which attributes to Dewdney [8] is a variation 
of the ones that Pickover developed. In reproducing these images, a time limit of 100,000 computations 
was used. This. single attractor displays some interesting visual aspects depending on the values selected, 
Figure 2 [9]. 

Xt+l = sin(aYt) - cos(bXt) 
Yt+l = sin(CXt) - cos(dYt) 

a. b. 
Figure 2: Bourke's swirling tendrils 

(Equation 2) 

c. 

In the first, all the points lie on curves with little or no deviation. In the second, a distinct curve is also 
traced but you can begin to see lighter trails forming. In the third, the distribution of points is much 
greater and because of the density of points in certain areas, surfaces begin to appear. The curves which 
are a greater congregation of points begin to represent the edges of these surfaces. A third dimension is 
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only implied by these visual cues since the equations are a two-dimensional mapping. In this case density 
of points is controlled by time or time can seen to begin to give two-dimensional attractors a three
dimensional visual appearance. The distarice between the points controls apparent shading. 

a. b. 
Figure 3: Comparison of density. 

When time is increased, the density of the points further draws out either hidden areas within regions 
of the attractor or it strengthens what appears to be edges of three-dimensional surfaces. Figure 3a. 
displays the Bourke's third attractor using 200,000 points. Since an increase of time will generate rmer 
detail at a given image resolution, rather than just increasing the time element, a percent fill approach was 
developed. In Figure 3b. the computation of the attractor was terminated when 30% of the potential 
image points were selected. This percent fill approach seems to be an improved method to generate 
consistent attractors at any image resolution, since predicting the time, number of points to compute, is 
impossible. 

The attractor in Figure 3b. required 630,276 point computations to fill 30% of an 780x780 pixel image. 
The chart in Figure 4 displays the point computations required to fill 5,776 empty pixels for each percent. 
The last percent required over 53,000 computations. 
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Figure 4: Number of computed points per percent. 
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The chart also begins to display the number of points that are repeated in the computations. In 
comparison, the two previous images of 100,000 and 200,000 computations had a percent fill 10.8% and 
17.0%. All of these images rely on density for shading since only a single color is used, black. 

3. Time and Points 

Instead of density or a single color, representing the points within an attractor, Pickover [1] suggests that 
when points are computed the total number of times a point or pixel is selected become the criteria for 
assigning a color to it. Continuing with the attractor from Bourke, Figure 5a. displays the attractor based 
on 100,000 computations with the number of times each location was selected or hit recorded. The 
results were then normalized to 256 levels and then an equalize filter applied. As an alternative method, 
Figure 5b. the last time a location was selected is recorded instead. Then the results were normalized to 
256 levels, the equalize filter was not applied. A close visual inspection indicates a wider range of 
grayscale values· in the second method than the first. Pickover notes that the first method requires an 
extremely large number of computations to be able to distribute the number of hits at any meaningful 
level. 

~ ~ 

Figure 5: Comparing number of hits with when hit. 
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Figure 6: Number of computing points per percent. 

To better see this difference, a graph of the grayscale values was developed for each method. Figure 
6a. show the distribution based on the number of hits and 6b. the distribution based on the last hit. When 
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these graphs are summarized, as in Figure 7a., it is clear that the distribution is finer by the last hit 
method. When the image is equalized, the grayscale is readjusted but still not redistributed at a finer 
.level. Additional grayscale values are not produced, they are just moved. The more grayscale values that 
can be· generated, the better the detail of the attractor will be exposed, and the appearance of surfaces and 
edges become more profound. This is the goal of rendering the attractor. A good discussion of the 
problems with the equalization method can be found in Oliver at al [10]. 

Color Points: 100,000 Points: 30% 

Oto64 62,486 21,226 173,259 85,617 
65 to 128 17 16,207 19 41,264 

129 to 192 1 13,672 1 27,096 
193 to 255 1 11,400 1 19,303 

Total: 62,505 62.505 173,280 173,280 
By hits By last hit By hits By last hi 

& ~ 

Figure 7: Summary of the grayscale distribution. 

To further explore this distribution, the attractors were generated a second time using a 30% ·fill 
criteria. The results are displayed in Figure 8. The grayscale values are summarized in Figure 7b. The 
same type of distribution as before is exhibited. Figure 8b. demonstrates the distribution by last hit, it 
develops much larger areas of softer levels of grays. To further enhance· these levels, a very light 
gaussian blur can be applied to the final image. 

& ~ 

Figure 8: Final renderings by number of hits and by last hit. 

4. Expanding Time 

Figure 9a. displays another Bourke attractor based on Equation 2 [11]. This particular attractor is one 
that generates a large number of repeating values so that distinct curves are created with a small number 
of points appearing between the curves. Computing more points, adding time, will not introduce any in
between points. Devaney [12] discussed a random iteration algorithm for interated function systems that 
seemed appropriate for expanding the generated curves. This method is based on the random selection 
from a range of specific values. For these attractor this basic concept was used in two variations. The 
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first, Figure 9b. used a percent offset to compute related attractors. From these computed values anyone 
was selected. The result is a soft haze surrounding each of the curves in the attractor. The second, Figure 
9c. used the same percent offset, but the possible random values were selected from a fixed interval. The 
haze surrounding the curves was greater in area. In both cases, the region between the curves begins to be 
filled and create possible surfaces. 

a. b. c. 
Figure 9: Random selection of values for an attractor. 

While selecting values for a variety of attractors, it was noticed that related images were created when a 
single parameter was modified. For example, the attractor based on Equation 3 can generate an series 
having an unraveling motion when only the first parameter is changed [13]. A series such as this can be 
viewed as static images, frozen time, or animated to give an attractor the added dimension of motion. 
Other attractors were found that developed an unfolding motion. The challenge is to determine in a 
specific attractor which parameter or parameters can be changed and their range to generate this effect. It 
does offer an unique display of a related family of attractors. 

Xt+l = 1 sin3(aYt) 1 + cos(bXt) 
Yt+l = 1 sin2( CXt) 1- cos2( dYt) 

a. b. 
Figure 10: Unraveling an attractor. 

s. Dimension of Time 

(Equation 3) 

c. 

Joel [5] noted in his images of attractors the qualities of wisps of smoke being blown by a gentle wind, 
ropes coiling in space, and small beads strung along an invisible wire. Bourke titled his attractors 
swirling tendrils, a tenn related the botany. He also commented on the visualization of three dimensions 
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in two-dimensional attractors [14], many of the examples are more tendril like, while a few exhibit major 
surfaces. 

Figures 11 and 12 display a sample from the current series of rendered attractors based on this concept 
of dimension of time. Similar to pervious comments, the relationship of the image of the attractors to 
nature was apparent. Many of these could have been inspired from natural forces, such as, wind and 
water, or earthen formations. For example, the stone series explores the possible subsurface patterns in 
nature that are not visible to us; the smoldering images smoke, others; folding, bending, twisting, draping 
and crumpling of identifiable materials or organisms. The third dimension is detennined by the perception 
of the viewer coupled with the created intent by selection of attractor and its parameters. The forms 
include a ghostly view into an imaginary core. The swirling patterns gently display possible subsurface 
structures that cannot be logically followed through any dimension. Dimensions become ambiguous as 
your perception attempts to combine the individual points so they complete a whole, one that is devoid of 
context. 

Draping Fall II, 2002 Touched Stone Ill, 2002 

Within Stone I, 2002 Folds Over I, 2002 
Figure 11: Examples of completed strange attractors .. 
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Ringing Wave L 2002 Smoldering Rise L 2002 
Figure 12: Examples of completed strange attractors. 

For this paper the attractors were rendered grayscale on a white background. The actual images are 
colored in 256 levels ofred on a solid black background and rendered to a resolution of about 5,000 x 
5,000 pixels. The number of point computations required for these ranges from 12-to-59 million points. 
The current series can be viewed at: www.netcom.com/-bitart 
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