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Abstract 

The concept of compos able art is introduced and four examples of composable art objects are 
given. We analyze the number of different compositions that can be made for each object 
using combinatorics and the dynamic programming technique. 

1 Introduction 

Most traditional art is a painting or object created by an artist that is completely finished, in 
the sense that no changes can be made. Some forms of modern art are less rigid, like kinetic art. 
These include the mobiles of Alexander Calder and the mechanical installations of Jean Tinguely. 
One can also imagine art or design objects that allow various compositions to be made. The artist 
or designer chooses the limits within which variations are possible, and provides a mechanism by 
which different compositions can be made. Once a composition is made, the design object is in 
some fixed or stable configuration. We call such art or design objects composable art. 

Figure 1: Three compositions for the composable painting. 

Before proceeding with the introduction we give two examples. The composable painting 
consists of a box with a framed square opening in the front through which panels are visible. 
Each panel has a color and holes of a particular shape. Through the holes of one panel, the next 
panel behind it can be seen. Panels can be removed or inserted, and allow sliding over some 
distance in a slot. The concrete example has six panels of 50 by 100 cm of which four can be 
in the box at one time. One panel has square holes and is red, . another has circular holes and is 
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white, a third has triangular holes and is blue, etc. The outer box has a width of lSS· cm; the 
square opening has size 45 by 45 cm; Figure 1 shows three compositions. 

Diago has twenty wooden rods that come in five groups of four identical ones. The rods have 
a width of 27 mm and a thickness of 24 mm, e*ept' at regular intervals of 10 cm where the 
thickness is only 12 mm. The width of the thin tart is 27 mm so that another rod fits if it is 
perpendicular. The connections between two rods :~hat cross is basically the same as the logging 
cabin principle of stacking the beams. The shortesJ.four rods have two thin parts, the next group 
of four has three thin parts, and likewise, there are four rods each with four, five, and six thin 
parts. The background panel is 150 cm by 150 cm and has nine protrusions that support the 
intersections of two rods. 

Figure 2: Compqsitions for Diago. 

This paper gives two more examples of composahleart and analyses the number of compo­
sitions that can be made with each of the four objects. We will use both discrete mathematics 
and small computer programs in the analysis. In many cases the exact number of compositions 
cannot be determined, which is due to the combination of two factors. Firstly, often there are 
physical limitations on particular compositions that are difficult to put into rules that would give 
regularity. ~".the number of compositions is; oftep too large to'~ all of them and 
test eadl one D.·the physicallimitatiOft$. Ano~her~e·to note is ,that oombinatorian, different 
compositions do ootnecessarily have di1ferent visuli appearance. In the ccmlposable painting, for 
instance, it can be that the first three p;:mels bloCk all view ,to the fourth one. So although there 
is a choice whioh. panelt<> choose for thefeurth one, it may not matter for t~e visual appearance 
of theql;>jtct.1 . . , ' 

Composabielrt uauallY is abstract and geomet#c, and may involve symmetry. Since it must 
be possible to 8S,!emble different pieces in different V@ys, it is often the case that there is repetition 
of distances or l~ngths of sides. For example, the panels of the composable painting must be the 
same height so that all panels fit in all slots. More examples of composable art can be seen at 
http://www . cs ~uu. nIl "'marc/ composable-art/ . 

Composability in art and design has been used before, but not widely, to the author's knowl­
edge. The Swiss company Naef [8] makes design structures and toys, often with the idea of 
allowing many ways of arranging the pieces. Quite interesting is the Rietveld-Schroderhuis, lo­
cated in Utrecht [7]. The upper level of this house has walls that can be slid or folded, so that 
either several rooms or a big open space appears. One could call it a composable house. Mozart . . 

wrote a musical piece consisting of parts that could be arranged in several ways. He suggested 
the use of dice to determine the actual piece [4]. Other related objects are construction toys, of 
which there are many examples: Lego, Meccano, Ministeck. 
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2 Combinatorics and dynamic programming 

This paper gives the analysis of four composable art objects, all designed by the author. The 
analysis concerns the number of different compositions that can be made,assuming a suitable 
definition of what compositions are considered different. The analyses are based on standard 
techniques like binomial coefficients and recurrences. The recurrences are not of a standard form 
for which a closed solution exists, because certain conditions influence choices of the recurrence 
intermittently. Hence, a computer program can be used to count by using recursion. This 
implicitly generates all different composistions for the counting. However, it appears that the 
number of compositions is sometimes so large that this approach is infeasible. The remainder of 
this section describes how a technique called dynamic programming can be used to count more 
efficiently. 

Dynamic programming was invented in the mid fifties by Bellman [2]. Currently, it is a 
standard algorithm design technique applied to optimization problems that have a common sub­
structure, and is described in various textbooks on algorithms or optimization (e.g. [5]). It can 
be applied to problems related to travelling salesperson (bitonic Euclidean version), minimizing 
the penalty for extra spaces at the end of lines in a paragraph, optimal clustering problems, and 
many others. 
. Dynamic programming can also be used for counting problems. This is best illustrated' by the 

computation of the Fibonacci numbers. Recall that the Fibonacci function is defined as F(O) = 1, 
F(l) = 1, and for all i > 1 we have F(i) = F(i - 1) + F(i - 2). Assume we want to compute the 
n-th Fibonacci number. It is easy to implement a recursive function (or method in Java) that 
takes an integern and computes F(n) by going into recursion twice if n > 1: once to determine 
F(n - 1) and once to determine F(n - 2). However, to compute F(n) our procedure would be 
called F(n) times, and as F(n) is exponential in n, our solution has exponential running time as 
well (roughly proportial to 1.6n ). Alternatively, we could compute F(n) by using an array A[O .. n] 
and fill it from smallest to highest index. Each A[i] with i ~ 2 is determined by looking up the 
(already computed and stored) values of A[i - 1] and A[i - 2]. This way, much less time is needed 
to compute F(n) = A[n] (roughly proportional to n steps). For n = 10, the improvement is large, 
for n = 30 the improvement is dramatic. The use of a table to store solutions to subproblems 
that' are needed many times in order to avoid re-computation is the main feature of dynamic 
programming. 

3 Examples of composable art 

3.1. Composable painting. A brief description of the composable painting was given in the 
introduction. All six panels are made of wood and have size 100 cm by 50 cm by 4 nun. One 
of the panels has no holes but has four areas of 50 by 50 cm in one color. It gives four possible 
background colors. The square opening in the outer box gives a view of 45 by 45 cm on the panels. 
The outer box is also made of wood and has size 155 em by 55cm by 8 cm approximately. The 
box is black inside, which gives a fifth possible background color. The box has four slots, each of 
which may fit one panel. Each panel can slide over 50 cm. 

Combinatorics: We will analyze the possibilities when two or three panels with holes are 
used. There is a choice of panels, order, orientation of each panel, and sliding position of each 
panel. When using two panels with holes (or no background panel) there is also the choice which 
slot is left unused; it gives slightly different depth effects. We ignore this issue in the analysis. 
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It can easily be incorporated, however. We quantify sliding by assuming that each panel has 6 
considerably different sliding positions, e.g. by a 10 cm sliding. Furthermore a panel can be placed 
in 4 orientations (exchange left-right and/or top-bottom). Therefore, the number of compositions 
for 2 panels is @ . 2 . 42 . 62 • 5 = 57,600 because we choose 2 from 5 panels, the chosen panels 
can be placed in 2 orders, in 4 different orientations each, in 6 different sliding positions each, 
and there is choice of 5 background colors. Similarly, the number of compositions for 3 panels is 
@. 3! .43 . 63 . 5 = 4, 147,200. 

3.2. Composable tapestry. The composable tapestry consists of 54 rods and one fixed piece 
at the top. The rods hang from each other and from the top piece by hooks. The rods have lengths 
5, 45, 85, and 125 cm, and have, respectively, 1, 2, 3, and 4 hooks at the top and the same number 
at the bottom. The vertical distance between two rods is roughly 5 cm. In principle, all rods 
hang horizontally. The rods come in three groups. One group has aluminum rods with a square 
cross-section. The second group has transparent finished wooden rods with a round cross-section. 
The third group has black wooden rods with a diamond shaped cross-section (rotated square). 
Within each group, there are 9 pieces of 5 cm, and 3 pieces each of 45, 85, and 125 cm. 

Figure 3: Compositions for the composable tapestry. 

Possible compositions: A standard composition is one where 4 hooks of the top piece are 
used, and all rods fill a rectangular area of 125 cm wide and roughly 135 em high (27 layers). 
It is possible to leave bigger holes, in which case more than 27 layers may appear. It is also 
possible to have rods stick out to the side, but in these cases balance comes into play. Rods 
could start to rotate away from the horizontal position. It is also possible to start with five hooks 
at the top piece and create wider compositions. Furthermore, one can hang some rods slightly 
non-horizontally by having the left and right sides at different layers. It is aesthetically better to 
have some degree of grouping rods of the same shape and color. 

Combinatorics: There are an enormous number of compositions possible with the composable 
tapestry. We only analyze the standard compositions of 4 hooks wide and 27 layers high. We 
first count the number cqlor assignments that are possible, and then we analyze the number of 
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silhouettes where all rods are assumed to have the same cross-sectional shape and color. These 
quantities can be counted independently and multiplied for the total number of compositions . 

. Counting color assignments is easy. Any composition using all pieces will have 27 short pieces, 
9 of each group, which are interchangeable. So there are e;) times e:) color assignments for the 
short rods, and similarly there are (~) times (~) color assignments for the 45 cm rods, and also 
for the 85 and 125 cm rods. 

Counting silhouettes is considerably harder. By the restrictions of the hangings we consider, 
each layer will have either one 125 cm rod, or one 85 cm rod and a 5 cm rod, or two 45 CIll rods, 
or one 45 cm rod and two 5 cm rods, or four 5 cmrods. If we denote by AU, k, m, n) the number 
of possible hangings with j 125 cm rods, k 85 cm rods, m 45 cm rods, and n 5 cm rods, then we 
get the following recurrence: 

A(j,k,m, n) = A(j -1,k,m,n) + 2· A(j,k -1,m,n -1) + A(j, k,m - 2,n)+ 
3 . A(j, k, m - 1, n - 2) + A(j,k, m, n - 4) 

The factor 2 is needed to account for the possibilities that the 5 cm rod can be left or right 
of the 85 cm rod; the factor 3 is obtained in the same way. If any argument of A(., .,.,.) is 
negative, then A is defined to be zero. We are interested in the value of A(9, 9, 9, 27). We could 
use a recursive computer program to count the number, but the program would make more than 
7.1014) recursive calls (the value of B(9, 9, 9, 27), where B is defined like A but without the factors 
2 and 3). Instead we use dynamic programming with a 4-dimensional array. This prevents the 
use of recursion if the same subproblem has been counted before. For the array, at most 28,000 
values need be determined. We obtain 4.8 . 1019 compositions. For completeness, we list more 
values of A(.,.,.,.) in Table 1. 

A(I, 1, 1,3) 
36 

Table 1: Number of silhouettes of the composable tapestry for different numbers of pieces. 

3.3. Diago. A description of Diago was given in the introduction. 

Possible compositions: Diago allows all compositions where the rods are, effectively, placed 
on a grid, rotated by 45 degrees. Any composition where two parallel rods do not use the same 
grid position is possible. Two orthogonal rods can always use the same grid position. Since there 
are four rods of each length, various symmetric compositions are possible, including rotational 
symmetry over 90 or 180 degrees, and line symmetries in one or two lines. One "boundary 
condition" exists: all of the rods must be supported by the protrusions, directly or indirectly. 

Combinatorics: The combinatorially distinct compositions that can be made with Diago can 
be counted in much the same way as with the composable tapestry, if we ignore the boundary 
condition. For convenience we rotate the back panel by 45 degrees and have horizontally and 
vertically placed rods. We first analyze in how many ways the rods can be placed only horizontally 
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on a square grid. To this end we define A(i,j,k,m,n,r,c) as the number of ways to place 
i, j, k, m, n rods of lengths 2, 3, 4, 5, and 6, respectively, starting at row r and column c on a grid 
of size [O .. Z - 1] x [O .. Z - 1]. We have: 

A(i,j,k,m,n,r,c) = L 

number of ways assuming we place a 2-rod at (r, c) 
number of ways assuming we place a 3-rod at (r, c) 
number of ways assuming we place a 4-rod at (r, c) 
number of ways assuming we place a 5--rod at (r, c) 
number of ways assuming we place a 6-rod at (r, c) 
number of ways assuming we leave (r, c) empty. 

We can only place a 2-rod if i > ° and c ~ Z - 2, and then the number of ways is A( i -
1,j,k,m,n,r,c + 2) or A(i -l,j,k,m,n,O,r + 1), depending on whether the 2-rod fills up the 
row r or not. If the 2-rod fills up the last row, then A(l, 0, 0, 0, 0, Z - 2, Z - 1) = 1, and 
A(l,j,k,m,n,Z - 2,Z - 1) = ° if any of j,k,m,n is positive. This is done to count only 
the compositions where all rods are used. In a similar way we can determine the number of 
ways when a 3-rod, a 4-rod, a 5--rod, or a 6-rod is placed, or no rod is placed at (r, c). Using 
dynamic programming with a 7-dimensional array of size 5 x 5 x 5 x 5 x 5 x Z x Z we determine 
A( i, j, k, m, n, 0, 0) for some choice of grid size Z and for every subset of the 20 rods in total. 
There are 55 = 3125 different subsets. 

To determine the total number of compositions we consider all 3125 choices of using i,j, k, m, n 
rods of each size horizontally and 4 - i, 4 - j, 4 - k,4 - m, 4 - n rods vertically. We get: 

. ~ 

No. of compositions = A( i, j, k, m, n, 0, 0) . A( 4 - i, 4 - j, 4 - k, 4 - m, 4 - n, 0,0) 
O$i,j,k,m,n$4 

Table 2: Number of compositions of Diago for various grid sizes. 

The number of compositions for different grid sizes is shown in Table 2. We ,must remark that 
not all compositions we count are connected, and many cannot actually hang on the background 
panel without sliding off. Exhaustive enumeration and testing each composition appears to be 
impossible within a reasonable amount of time. 

Table 3: Number of symmetric compositions of Diago for various grid sizes. 

For symmetric compositions-90 degrees rotation or in 2 diagonal lines-we take one rod of 
each length and consider the number of ways the 5 rods can be placed horizontally on a grid of 
size r x (r /2) if r is even. This specifies the placement of all other rods too by the symmetries, 
and no conflicts in positioning can occur. The number of such symmetric compositions is shown 
in Table 3. Similar ideas apply to odd values of r and to different symmetries. 
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Further analysis for Diago: One deficiency in the analysis is that it does not take into ac­
count the nine protrusions that must support the composition. This condition does not combine 
well with the recurrence, and the whole analysis breaks down. Similarly, it is not possible to only 
count the compositions in which the rods form only one connected component. One possible way 
to estimate the number of compositions that are properly supported, or connected, or both, is 
Monte Carlo simulation. For a given composition we can easily program a test to determine if it 
is properly supported and/or connected. The array produced for dynamic programming allows 
us to generate a random composition, because the values in the array provides the distribution 
of counts for the sub compositions. The idea of using the dynamic programming tables for ran­
dom generation has been observed before to generate random strings [6], random alignments of 
strings [1], and random outerplanar graphs [3]. If we generate 10,000 random compositions on an 
8 x 8 grid and would find that, say, 21% is supported, then we could estimate the total number 
of compositions that are supported to be 21 % of 6.5 . 1023 • 

3.4. Town and Forest. The base is the only fixed piece of the Town and Forest. It is a shelf 
with three slots in the length direction. Since the sides of the shelf are slanting, the slots have 
slightly different lengths, namely 160, 170, and 180 cm from front to back. The slots have a width 
of 5 mm and fit the 12 pieces of 4 mm thick hardboard. There are 6 triangular pieces that are 
like pine trees. They have three different sizes and three different shades of green, which makes 
them all distinct. Furtnermore, there are 4 pentagons that are like houses and a tower. The 11th 
piece is a hexagon and is a bigger building. The 12th piece is a trapezoid that can be considered 
a train. Some pieces have the same width. Two of the houses are the same. All other pieces are 
unique. The occurring widths are 36 cm, 35 cm, 29 cm, 27 cm (twice), 23 cm (three times), and 
15 cm (four times). 

Possible compositions: The 12 pieces fit in the three slots behind or next to each other. All 
pieces are widest at their base; there are no overhangs. Not all pieces fit in the same slot. To 
determine if a subset of the pieces fits in some slot we only have to add the base widths of the 
pieces and compare it to the slot length. 

Combinatorics: Assume we have k pieces aI, ... , ak of width lail. There are three slots, a 
front, middle, and back slot. Two compositions are the same if and only if they have the same 
pieces in the same slots and in the same order. We disregard the precise positions altogether and 
only consider combinatorially distinct compositions. 

Assume first that the three slots are long enough to hold all pieces. If there were only one 
slot, the number of compositions would be Nl(k) = k! . When there are two slots, we get: 

k (k) k N2(k)=~ i ·i!·Nl(k-i) = ~k! = (k+l)!, 

(choose i from k pieces for the second slot, which can be placed in i! orders). More generally, for 
k pieces and j slots, we can model all compositions by considering all k! permutations and all 
ways of separating the sequence into j groups (slots 1, ... ,j) by j - 1 separators. This can be 
done in (k + j -l)!/U - I)! ways. Division by (j - I)! is needed because all separators are the 
same for· the partitioning. 

For the Town and Forest, there are 12 pieces and 2 of them are the same. For computer­
assisted counting, we can enumerate all possibilities and test if-in a slot assignment-the pieces 
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fit. We only enumerate the 312 = 531,441 assignments into sets 81, 82 , and 8 3 , one for each slot. 
H the subsets fit in their slot, that is, if 

L lal::; slot length 
aESi 

for i = 1,2,3, then we count 1811! . 1821' . 1831'. A computer program counted 471,902 slot 
assignments that would fit, and counted 19,497,542,400 compositions. Since two pieces are the 
same, this last number must be halved. 

4 Future work 

We presented fourcomposable art objects and analyzed the number of different hangings or 
compositions. The computer-assisted analysis of two of the objects was based on an algorithms 
design technique called dynamic programming. It allows to count the number of hangings without 
explicitly enumerating all. The technique is general; it can also be applied to another, quite 
different composable art object currently under construction. The other two composable art 
objects that were analyzed required straightforward combinatorics, one complemented with a 
simple implementation. 

Other composable art objects and larger pictures of the ones described here can be seen 
at http://vrw.I1 . cs . uu. nl/ rvmarc/ composable-art/ . Other designs are under construction or 
planned in the future. Besides the use of programs for combinatorics, it is also planned to develop 
software to generate and evaluate particular compositions. This requires a suitable definition of 
an aesthetical composition. 
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