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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

Electrostatic potentials created by static electric charge distributions are the core concept of charge related phenome­

nons. Plots of these curves and surfaces play an invaluable role in comprehending the underlying physical ideas. 

Generally, 2D plots of potentials are hardly considered; 3D surfaces are mostly ignored. The author has applied 

Mathematica and improved the situation -- he has also stumbled across the artistic features of the plots. bridging the 

gap between the art of science and abstract art. Animation of one such set of plots is considered to create figures 

resembling collages formed by a kaleidoscope. 

1. Introduction 

Electrostatics is a well established branch of physics -- however, comprehension of some of its abstract 
concepts relies on mental visualization of quantities such as scalar potentials and vector fields. Visualiz­

ing the potentials could be challenging; this by itself contributes to the challenge of the understanding 
the related concepts -- leave alone the associated vector fields. It is not a common practice to display 
the potentials, the majority of the standard texts [1-2] conveniently have ignored them. In a few cases, 
20 contour plots are displayed[3], seldomly 30 plots of the contours are considered. 

Since the aforementioned texts have been published, computer technology has progressed tremen­

dously. Along with technological advancements, powerful software programs capable of performing 
symbolic and graphic scientific computation have been developed. By adapting one such program, 
Mathematica [4], the author by way of examples revisited a few basic cases. 

The 20 and 3D potential curves and surfaces created by charged particles possess somewhat artistic 
features. Compatible with the theme of the conference the author has discussed specific examples that 
mathematically are easy to follow and artistically are pleasing to view. It is the objective of this article 
to run a bridge across the art of physics, mathematics and the abstract art. 

Scientifically speaking, a charge distorts the homogeneity of the space. To study the shape of the 
distortion and the interaction between the charges, the electric potential is introduced. The electric 

potential at point -; from a set of scattered discrete point charges qi , i = 1, 2, 3, ... n positioned at -;i is 

V(r) = L:l V( 1-; - -;i I), where V( 1-; - -;i I) = ~ and 1-; - -;i 1 is the distance between -; and -;i 



92 Haiduke Sarafmn 

with k being a constant. By applying this mathematical function to various situations in the following 

sections a few fundamental cases are discussed. 

2. Case study I 

To begin, we position a point charge at the origin, and for the sake of simplicity we set the value of kq 

to unity. The related potential is v1(r) = 1.. In 2D cartesian coordinate system, v1(x, y) = k . As 
r ~~ 

one may predict the equipotentials, i.e. the points in the space with the same potentials, should be 

unevenly spread out concentric circles about the charge. To confirm this, we apply Mathematica's 

ContourPlot. The left figure of Figure 1 is the display of this function. Although useful, it is not 

customary to display the 3D contour plot of the potential. Mathematica's Plot3D function easily plots 
the function. This is shown to the right of Figure 1. 

Block[ {V1 = 1 , $DisplayFunction = Identity}, 
-Vx2 + y2 

g1=ContourPlot[V1, {x, -1, 1}, {y, -1, 1}, 
Frame ~ False, PlotPoints ~ 50, ContourStyle ~ GrayLevel [0.5] ] ; 

g2=Plot3D[V1, {x, -1, 1}, {y, -1, 1}, Lighting~False, Background~ 

GrayLevel [0.6] , Mesh ~ False, Axes ~ None, Boxed ~ False, PlotPoints ~ 50] ] ; 

Show[GraphicsArray[{g1, g2}]]; 

Figure 1: The light-gray concentric circles of the left figure are the equipotentials of a positive point 

charge; its 3D plot is displayed to its right 

3. Case study II 

a) The investigation of displaying the equipotentials now is extended to two-points. First we consider 

a symmetrical case created by two identical positive charges. In a two-dimensional coordinate system, 
the charges are positioned at (a,O) and (-a,O). According to the general format of the potential function 

given in the introduction the corresponding potential is V21(x, y) = ...; kq~ y2 +...; ~ y2 As 
(x-a) + (x+a) + 

before, we set kql = k'b = 1 and conveniently we choose a = 0.5 units. The 2D and 3D contour plots 

of equipotentials are displayed in Figure 2. 
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Block [{V2 =:.j 1 2 +:.j 1 2 ,$DisplayFunction = Identity} , 
(x-O.5) +y2 (x+O. 5) +y2 

gl = ContourPlot [V2, {x, -1, 1}, {y, -1, 1}, 
Frame ~ False, PlotPoints ~ 50, ContourStyle ~ GrayLevel [0.7] ] ; 

g2 = Plot3D[V2, {x, -1, 1}, {y, -1, 1}, Lighting~False, 
Background ~ GrayLevel [ 0 . 6], Mesh ~ False, 

Axes ~ None, Boxed ~ False, PlotPoints ~ 50]] ; 

Show[GraphicsArray[{gl, g2}]]; 

Figure 2: The light-gray curves of the left figure are the equipotentials of a pair of identical positive point 

charges; its 3D plot is displayed to its right 

b) By changing the sign of one of the charges we study the potential created by an electric dipole. This 

requires kql = - k'b = 1; the corresponding potential is V22(x, y) =..; kq~ +..; ~ . As in 
(x-a) +y2 (x+a) +y2 

the previous case, the charges are positioned at (a,D) and (-a,D) with a = 0.5 units. Its 2D and 3D 

equipotentials are shown in Figure 3. 

Block[ {V22 = :.j(X_O\)2+y 2 - :.j(X+O\)2+y 2 ' $DisplayFunction = Identity}, 

gl = ContourPlot [V22, {x, -1, 1}, {y, -1, 1}, 

PlotPoints ~ 50, Frame ~ False, ContourStyle ~ GrayLevel [0.3] ] ; 
g2=Plot3D[V22, {x, -1, 1}, {y, -1, 1}, Lighting~False, 

Background ~ GrayLevel [0 . 3] , Axes ~ None, 

Boxed ~ False, PlotPoints ~ 50, Mesh ~ False] ] ; 

Show[GraphicsArray[{gl, g2}]]; 
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Figure 3: The dark-gray curves o/the leftfigure are the equipotentials o/a dipole; its 3D plot is displayed to its 

right 

4. Case study III 

By choosing different charges, asymmetrical equipotentials are produced. For instance, we set kql = 1 

and k'l2 = 4. Without moving the charges from their previous positions, the corresponding potential 

becomes V23[x, y] =" 1 2 +" 4 2 • The contour and density, as well as a 3D profile of 
(x-O.S) +y2 (x+O.5) +y2 

the 2D contour of the equipotentials are displayed in Figure 4. 

Block [{V23 =.,j 1 2 2 + '" 4 2 2 ' $DisplayFunction = Identi ty} , (x-O.5) +y (x+O.5) +y 

gl = ContourPlot[V23, {x, -1, 1}, {y, -1, 1}, 
PlotPoints ~ 50, Frame ~ False, ContourStyle ~ GrayLevel [0 . 5] ] i 

g2 = DensityPlot[V23, {x, -1, 1}, {y, -1, 1}, 

PlotPoints ~ 20, Frame ~ False, Mesh ~ False] i 
g3 =Plot3D[V23, {x, -1, 1}, {y, -1, 1}, Lighting~False, 

Background ~ GrayLevel [0 . 6] , Axes ~ None, 

Boxed ~ False, PlotPoints ~ 50, Mesh ~ False] ] i 

Show [GraphicsArray [ {gl, g2, g3}]] i 

Figure 4: The light-gray curves on the left are the equipotentials. The middle and the rightfigures are the tiling 

and 3D plots o/the contour plots o/the leftfigure, respectively 

5. Case study IV 

a) In this study we consider four identical point charges and position them symmetrically about the 

origin at (a,O), (-a,O), (O,a) and (O,-a) with a = 0.5 units. To generate symmetrical equipotentials we 

choose equal charges, kql = k'l2 = k'b = kq4 = 1. The corresponding potential according to the general 
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fonnat given in the introduction is V41[x, y] =" 1 2 +" 2 +" 1 2 +" 1 2' (x+O.5) +y2 (x-O.5) +y2 x2+(y-O.5) x2+(y+0.5) 

As in the case study ill we plot its contour, density and 3D profile of the 2D equipotentials. These are 

shown in Figure 5. 

Block[{V41 = 1 + 1 
V(X+O.5)2+y 2 V(X-O.5)2+y2 

$DisplayFunction = Identity} I 

gl =ContourPlot[V41, {x, -1, 1}, {y, -1, 1} I PlotPoints ~ 50, 

Frame ~ False I ContourStyle ~ GrayLevel [0.5)) i 
g2 = DensityPlot[V41, {x, -1, 1}, {y, -1, 1}, Mesh~False, 

PlotPoints ~ 20, Frame ~ False] i 

g3 = Plot3D[V41, {x, -1, 1}, {y, -1, 1}, Lighting~ False, Background~ 

GrayLevel [0.6], PlotPoints ~ 50, Axes ~ None, Boxed ~ False, Mesh ~ False]] i 

Show [GraphicsArray [ {gl, g2, g3}]] i 

Figure 5: The light-gray curves on the left are the equipotentials. The middle and the right figures are the tiling 

and 3D plots o/the contour plots o/the left figure. respectively 

b) In the following we have also shown the potential of two pairs of equal positive and negative 
charges, kql = kq2 = -k(fj = -kq4 = 1. To compare the effect of the negative charges v.s. the case 
study ill, all four charges are left at their previous positions. The potential is 
V42[x, y] = 1 + I ,,1 2 and its various plots are shown in 

..; (x+o.5i+y2 ..; (x-0.5)2+y2 ..; X2+(y-0.5)2 x2+(y+0.5) 

Figure 6. 

Block[ 

1 {V42 = 1 + 1 
-J (x + 0 .5) 2 + y2 -J (x - 0 . 5) 2 + y2 -Jx2 + (y- 0.5)2 

$DisplayFunction = Identity} I 

gl = ContourPlot[V42, {x, -1, 1}, {y, -1, 1}, PlotPoints ~ 50, 

Frame ~ False, ContourStyle ~ GrayLevel [0.5] ] ; 

g2 = DensityPlot[V42, {x, -1, 1}, {y, -1, 1}, 

PlotPoints ~ 20, Frame ~ False, Mesh ~ False] i 

1 

g3 = Plot3D [V42, {x, -1, 1}, {y, -1, i}, Lighting ~ False, Background ~ 

GrayLevel [0.6], PlotPoints ~ 50, Axes ~ None, Boxed ~ False, Mesh ~ False]] i 

Show [GraphicsArray [ {gi, g2, g3}]]; 
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Figure 6: The outlines of the lobes on the left are the equipotentials. The middle and the right figures are the 

tiling and 3D plots of the contour plots of the left figure, respectively 

6. Case study V 

a) 2D and 3D regulated electrostatic kaleidoscopes 

Thus far, the case studies graphically display the static relationships between the charge distributions 

and the potentials. Mathematica, however, is capable of animating a set of comparable figures, dynami­

cally enforcing their graphical comparisons. For instance, in case study N, by changing the charge of 

the fIfth particle according to k'ls = n with n = {-3, 3}, generates seven comparable cases. The associ-
ated potential is V5n[x, y, n] = 1 + 1 + 1 + 1 + n and 

..; (x+O.7)2+y2 ..; (X-O.7)2+y2 ..; x2+(y-O.7)2 ..; x2+(y+O.7)2 ..; x2+y2 

its 2D contour equipotentials are shown in Figure 7. 

Block [ {V5n = 1 + 1 + --;:.===1====;;=- + 
../(x+0.7)2+ y 2 ../(x-0.7)2+y2 ../X2+ (y-0.7)2 

1 n } + , $DisplayFunction = Identity , 
../X2 + (y + 0 .7) 2 ../x2 + y2 

gn = Table [ContourPlot [V5n, {x, -1, 1}, {y, -1, 1}, PlotPoints ~ 50, 

Frame ~ False, ContourStyle ~ GrayLevel [0.5] ], {n, -12, 12, 4}]] i 

Show[GraphicsArray[Table[gn]]]i 

Figure 7: Contour plots of equipotential curves of a five particle charge distribution. Curves are 

generated by changing the value of the charge of the center particle between n = {-3, 3} 

Double clicking one of these stationary frames will automatically activate the animation, interchanging 

the frames sequentially, giving an illusion of figures made by a kaleidoscope. 

In the above code, by replacing ContourPlot function with DensityPlot a similar kaleidoscopic fIgures 

may also be formed, this is left for interested readers. 

However, with Mathematica a 3D kaleidoscopic fIgures may also be formed. The following code 

generates a set of seven 3D profile equipotentials. These are shown in Figure 8. 
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111 
Block[ {V5n = + + + .J (x + 0 .7) 2 + y2 .J (x - 0 .7) 2 + y2 .J x 2 + (y - 0 .7) 2 

1 + n ,$DisplayFunction = Identity} , 
.J x 2 + (y + 0 . 7) 2 .J x 2 + y2 

gn=Table[Plot3D[V5n, {x, -1, 1}, {y, -1, 1}, Lighting~False, 

Background ~ GrayLevel [0.6], PlotPoints ~ 50, Axes ~ False, 

Boxed~False, Mesh~Falsel, {n, -12, 12, 4}]]i 

Show[GraphicsArray[Table[gn]]]i 

Figure 8: 3D profile of 2D equipotential contour plots of a five particle charge distribution 

Double clicking one of these stationary frames will automatically activate the animation, interchanging 

the frames sequentially, giving an illusion of figures made by a kaleidoscope. 

b) 2D and 3D random electrostatic kaleidoscopes 

The kaleidoscopic figures made with Figure 7 and 8 are regulated, meaning, animation interchanges 

cyclically the same seven figures. However, for example, by randomly positioning the fifth charge, and 

even by assigning a random value to the charge, one generates an unpredictable kaleidoscopic figures. 

The potential of one such case is 

V5R[x, y] = .J(X+O~7)2+y2 + .J(X-O~)2+y2 + .Jx2+(~-O.7)2 + .Jx2+(~+O.7)2 +. ~x::::m[]2 • Figure 9 and 10 

are two unpredictable contour and density plots of this potential. 

Show [GraphiCSArray [ 

Table [ ContourPlot [ 1 + 1 + 1 + 
.J (x + 0 .7) 2 + y2 .J (x - 0 .7) 2 + y2 .J x 2 + (y - 0 .7) 2 

1 Random [Integer, {-2, 2}] { -1 1} { -1 1} 
2 + I X, I I Y, I , 

V x 2 + (y + 0 .7) V x 2 + Random [ ] 2 

PlotPoints ~ 20, Frame ~ False, DisplayFunction~ Identity], {n, 1, 7}], 

DisplayFunction ~ $DisplaYFUnction] ] i 

Figure 9: Contour plots of equipotential curves of a five particle charge distribution. Curves are 

generated by randomly changing the position and the value of the fifth charge 
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Show [GraphicSArray [ 

Table [DensityPlot[ 1 + 1 + 1 + 
V(x+O.7)2+ y 2 V(X-O.7)2+y2 Vx2 + (y_O.7)2 

1 Random [Integer, {-2, 2}] { -1 1} { -1 1} + I X, , , y, , , 
vx2 + (y+O.7)2 vx2 +Random[]2 

PlotPoints-+20, Frame-+False, DisplayFunction-+Identity], {n, 1, 7}], 

DisplayFunction -+ $DisplayFunction] ] ; 

Figure 10: These are density plots of Figure 9 

7. Summary and Conclusion 

By way of examples it is shown that it is useful to display abstract mathematical functions to describe 

the distortion of charged space. Various fundamental examples have been considered. The described 

methods can readily be extended to study cases on a need basis. On the other hand, the plots possess 

artistic characters and can be viewed as art work. Reviewing these plots may intrigue a physicist to 

think about the implicit artistic features of the distorted space or an artist conversely may be fascinated 
about the way the nature works. 
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