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Abstract 

For more than a millennium, Islamic artists and craftsmen have used geometric patterns to decorate 
buildings, cloth, pottery, and other artifacts. Many of these patterns were "wallpaper" patterns - they 
were planar patterns that repeated in two different directions. Recently related patterns have also been 
drawn on the Platonic solids, which can conceptually be projected outward onto their circumscribing 
spheres, thus utilizing a second of the three "classical geometries". We extend this process by exhibiting 
repeating Islamic patterns in hyperbolic geometry, the third classical geometry. 

Introduction 

Islamic artists have long had a fascination for geometric patterns such as the one below in Figure 1 from 
the Alhambra palace. The purpose of this paper is to show that it is possible to create Islamic patterns in the 
hyperbolic plane, such as the one shown in Figure 2 which is related to the pattern of Figure 1. 

Figure 1: An Islamic pattern from the Alhambra. Figure 2: An Islamic hyperbolic pattern based on the 
Euclidean pattern of Figure 1. 
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The techniques for creating the original Islamic patterns were passed down from master to apprentice 
artisans, and have subsequently been lost. However, for more than 100 years, when it first became possible to 
print color reproductions, people have tried to analyze those patterns starting with Bourgoin [3]. The analysis 
of wallpaper patterns, patterns of the Euclidean plane that repeat in two different directions, became more 
precise when their 17 possible symmetry groups were classified. Abas and Salman have carried out the . 
classification of hundreds of Islamic patterns with respect to these symmetry groups [2]. 

M. C. Escher was always fascinated with wallpaper patterns and created his first prints of them in the 
early 1920's. But his interest was sparked into a consuming passion by his visit in 1936 to the Alhambra, a 
Moorish palace in Granada, Spain, which was richly decorated with a large number ofIslamic patterns. From 
that point on Escher filled notebooks with drawings of wallpaper patterns, many inspired by those Islamic 
patterns. For example. Schattschneider (page 18 of [9]) shows a sketch of his interlocking ''weightlifters'' 
superimposed on the pattern of Figure 1; that weightlifter pattern later became Escher's Notebook Drawing 
Number 3. 

The goal of this paper is to take a first step toward combining Islamic patterns .and hyperbolic geometry. 
Recently artists have created patterns on cubes, tetra4edra, dodecahedra, and icosahedra (see Plates 8, 12, 15, 
and 16 of [2]). Of course patterns on regular polyhedra can be thought of as spherical patterns by projecting 
them outward onto the polyhedrons' circumscribing spheres. Thus Islamic patterns will have been created 
in each of the three classical geometries: Euclidean, spherical, and hyperbolic geometry. 

We will begin with a brief discussion of Islamic patterns, followed by a review of hyperbolic geometry, 
regular tessellations, and symmetry groups. Then we show a series of hyperbolic Islamic patterns that are 
related to existing Euclidean Islamic patterns. Finally, we indicate some directions for future work. 

Islamic Patterns 

Islamic artisans have been decorating texts, buildings, and other artifacts with geometric patterns for 
more than a thousand years. Artists working in a religious setting could hint at the infinitude of God by draw­
ing potentially infinite repeating patterns (pages 1 and 2 of [2]). There are various kinds of 2-dimensional 
Islamic repeating patterns, including spirals, star patterns, key patterns, and "Y" patterns. Other kinds of 
Islamic patterns include arabesques (flower and intertwining vine patterns), and Kufic patterns, which are 
words written in stylized Arabic script. Of course many patterns fall into more than one category. 
. European interest in Islamic art was initiated by Owen Jones' color reproductions of various kinds of 

Islamic art in his book The Grammar ofOmament [6], first published about 150 years ago. Since then, a 
number of people have classified many of the wallpaper patterns [2, 5], and others have made guesses as 
to how the patterns were originally created [5, 8]. Recently Abas and Salman presented methods for the 
computer generation of ~uch patterns [1], and Kaplan has designed a program to draw Islamic star patterns 
[7J. We will continue these endeavors by suggesting a more general framework for classifying the patterns, 
and then using that classification as a basis for creating new Islamic patterns in the hyperbolic plane. 

Many repeating Islamic patterns seem to have been built upon the framework of a regular tessellation 
of the Euclidean plane. Such regular tessellations generalize to the hyperbolic plane. In the next sections, 
we will discuss those tessellations and their symmetry groups, which generalize some of the 17 symmetry 
groups of wallpaper patterns. 

Hyperbolic Geometry and Regular Tessellations 

Hyperbolic geometry is the least familiar of the classical geometries. This is probably because the entire 
hyperbolic plane cannot be embedded in 3-dimensional Euclidean space in a distance preserving way -
unlike the sphere and the Euclidean plane. However, there are useful models of hyperbolic geometry in the 
Euclidean plane, which must perforce distort distance. 
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We will use the Poincare circle model for the same reasons that made it attractive to Escher: (1) it is 
conformal (i.e. the hyperbolic measure of an angle is equal to its Euclidean measure) - consequently a 
transformed object has roughly the same shape as the original, and (2) it lies entirely within a bounding 
circle in the Euclidean plane - allowing an entire hyperbolic pattern to be displayed. In this model, the 
hyperbolic points are the interior points of the bounding circle and the hyperbolic lines are interior circular 
arcs perpendicular to the bounding circle, including diameters. Figure 3 shows the hyperbolic lines of 
reflection symmetry of Figure 2 For example, Figure 3 shows the hyperbolic lines of reflection symmetry 
superimposed on the pattern of Figure 2. 

Two-dimensional hyperbolic geometry satisfies all the axioms of 2-dimensional Euclidean geometry 
except the Euclidean parallel axiom, which is replaced by its negation. Figure 4 shows an example of this 
hyperbolic parallel property among the reflection lines in Figure 3: there is a line, i, (the vertical diameter), 
a point, P, not on it, and more than one line through P that does not intersect i. 

Figure 3: The tessellation {5,4} superimposed on Figure 4: An example of the hyperbolic parallel 
the pattern of Figure 2. property: a line i, a point P not on i, and two lines 

through P not meeting i. 

Equal hyperbolic distances in the Poincare model are represented by ever smaller Euclidean distances 
toward the edge of the bounding circle (which is an infinite hyperbolic distance from its center). All the 
curvilinear pentagons (actually regular hyperbolic pentagons) in Figure 3 are the same hyperbolic size, even 
thought they are represented by different Euclidean sizes. 

The curved pentagons that meet four at a vertex in Figure 3 form the regular tessellation {5, 4} More 
generally, in any of the classical geometries the SchHifli symbol {p, q} denotes. the regular tessellation by 
regular p-sided polygons, or p-gons, meetirig q at a vertex. We must have (p - 2)(q - 2) > 4 to obtain 
a hyperbolic tessellation; if (p - 2)(q - 2) = 4 or (p - 2)(q - 2) < 4, one obtains tessellations of the 
Euclidean plane and the sphere, respectively. One of the vertices of the {5, 4} is centered in the bounding 
circle in Figure 3 - but note that the center of the bounding circle is not a special point in the Poincare 
model, it just appears so to our Euclidean eyes. 

Assuming for simplicity that p ~ 3 and q ~ 3, there are 'five solutions to the "spherical" inequality 
(p - 2)( q - 2) < 4: {3,3}, {3, 4}, {3,5}, {4, 3}, and {5,3}. These tessellations may be obtained by 
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"blowing up" the Platonic solids: the regular tetrahedron, the octahedron, the icosahedron, the cube, and 
the dodecahedron, respectively, onto their circumscribing spheres. In the Euclidean case, there are three 
solutions to the equality (p - 2)(q - 2) = 4: {3,6}, {4,4}, and {6,3}, the tessellations of the plane by 
equilateral triangles, squares; and regular hexagons. Bourgoin used {6, 3} and essentially {4, 4} in some of 
his classifications of Islamic patterns [3]. Wilson shows how some hexagonal Islamic patterns can also be 
thought of as patterns based on {3, 6} (see Plate 38 of [10]). Of course there are infinitely many solutions 
to the hyperbolic inequality (p - 2)(q - 2) > 4, and hence infinitely many regular hyperbolic tessellations. 

This completes oUr treatment of hyperbolic geometry and regular tessellations. Next, we complete our 
theoretical considerations with a discussion· of repeating patterns and their symmetry groups. 

Repeating Patterns and Symmetry Groups 

A repeating pattern in any of the classical geometries is a pattern made up of congruent copies of a basic 
subpattern or motif One copy of the motif in Figures 1 and 2 is the right half of the top black polygonal 
figure in the center of the pattern; the left half may be obtained from it by reflection in the vertical symmetry 
axis. In the discussion below, we assume that a repeating pattern fills up its respective plane. Also, it is 
useful that hyperbolic patterns repeat in order to show their true hyperbolic nature. 

The regular tessellation, {p, q}, is an important kind of repeating pattern since it forms a framework for 
many Euclidean Islamic patterns and for the hyperbolic Islamic patterns presented in this paper. The radii 
and perpendicular bisectors of the edges of a p-gon divide it into 2p right triangles whose other angles are 
1r /p and 1r / q. Anyone of these right triangles can serve as a motif for the tessellation. 

A symmetry operation or simply a symmetry of a repeating pattern is an isometry (distance-preserving 
transformation) that transforms the pattern onto itself. For example reflection in the axis of symmetry of 
any of the polygons of Figures 1 or 2 is actually a symmetry of the whole pattern (if color is ignored in 
Figure 1). A reflection across a hyperbolic line in the Poincare circle model is an inversion in the circular 
arc representing that line (or an ordinary Euclidean reflection across a diameter). Reflections across the 
radii and perpendicular bisectors of the edges of each p-gon are symmetries of {p, q}. Reflections are basic 
kinds of isometries in that the other isometries can be decomposed into a finite succession of reflections. 
For example, in each of the classical geometries, the composition of reflections across two intersecting lines 
produces a rotation about the intersection point by twice the angle of intersection. There is a 4-fold rotation 
symmetry, i.e. a rotational symmetry by 1r / 4 about the trailing tips of the "arms" of the polygons of Figure 
1. Similarly, there is a 5-fold rotation symmetry about the trailing tips of the polygon arms in Figure 2. The 
points of 5-fold rotational symmetry are at the centers of the overlying pentagons in Figure 3. 

There are 1r / 4 and 1r /5 rotation symmetries about the trailing tips of the "arms" of the polygons of 
Figures I and 2, respectively. The points of 1r /5 rotational symmetry are at the centers of the overlying 
pentagons in Figure 3. 

The symmetry group of a pattern is the set of all symmetries of the pattern. The symmetry group of 
the tessellation {p, q} is denoted [p, q] (using Coxeter's notation [4]) and can be generated by reflections 
across the sides of the· right triangle with angles of 1r / p and 1r / q; that is, all symmetries of {p, q} may be 
obtained by successively applying a finite number of those three reflections. Note that such a right triangle 
can also serve as a motif for its "dual" tessellation {q,p}, and so the symmetry groups [p, q] and [q,p] are 
isomorphic, i.e. "the same" mathematically. This is denoted: [p, q] ~ [q,p]. In the Euclidean case, [4,4] is 
the wallpaper group p4m, and [3,6] or [6, 3] is the group p6m. In the Islamic patterns that Abas and Salman 
classified, the groups p6m and p4m appeared most frequently (see Figure 5.1 of [2]). Abas and Salman 
show a Kufic pattern on a dodecahedron with symmetry group [3, 5] (plate 8 of [2]); they also show a star 
pattern on a cube with symmetry group [3,4] (see Plate 16 of [2]). Of course, these can be considered to be 
spherical patterns. . 

It has been known for about 100 years that there are exactly 17 possible symmetry groups of patterns 
of the Euclidean plane that repeat in at least two different directions - these are often referred to as the 
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wallpaper groups. Many sources have descriptions of these groups, including Abas and Salman [2]. This 
completes our discussion of repeating patterns and introduces symmetry groups. In the following sections, 
we will examine several patterns and their symmetry groups. -

Patterns with Symmetry Group [p, q] 

The arabesque pattern in Figure 5 below has symmetry group p6m (or [6,3]). I made it up by repeating 
one of the hexagonal arabesques that appeared on the frontispiece of a Koran produced in Iran in 1313, and 
reproduced as Plate 81 of [10]. Only a slight distortion is required to deform a hexagon arabesque of Figure 
5 to obtain a hyperbolic hexagon arabesque that will fit in a hexagon of the {6, 4} tessellation. The resulting 
pattern, which has symmetry group [6,4] is shown in Figure 6. Patterns with symmetry group [p, q] can be 
recognized by their large number of reflection lines. 

Figure 5: An Islamic pattern with symmetry group Figure 6: An Islamic hyperbolic pattern with sym­
p6m ( = [6, 3]). metry group [6, 4] that is based on the Euclidean pat­

tern of Figure 5. 

Patterns with Symmetry Group [p, q]+ 

The subgroup of [p, q] that consists of orientation-preserving transformations is denoted [p, q]+ by Cox­
eter [4], and can be generated by rotations of 27r /p and 27r /q about the p-gon centers and vertices of the 
tessellation {p, q}. Since there are no reflections in [p, q]+ (because reflections reverse orientation), spiral 
patterns often have symmetry groups of the form [p, q]+. Again, because of the duality between p and q, 
the symmetry groups [p,q]+ and [q,p]+ are isomorphic. The symmetry groups p4 (~ [4,4]+) andp6 ( 
~ [6, 3]+ ~ [3, 6]+ ) are the only two Euclidean groups of this type. 'Figure 7 shows a spiral pattern from 
the Alhambra (in [6]) with symmetry group p6. Figure 8 shows a hyperbolic version of this pattern having 
symmetry group [7,3]+. Patterns with symmetry group p4 or p6 appear less frequently that patterns with 
symmetry group p4m or p6m among the patterns classified by Salman and Abas (see Figure 5.1 of [2]), but 
more frequently than some patterns with less symmetry. Abas and Salman show a pattern on an icosahedron 

. that appears to have symmetry group [3, 5]+ (Plate 12 of [2]); 



252 Douglas Dunham 

Figure 7: A pattern from the Alhambra with sym- Figure 8: A hyperbolic pattern based on the pattern 
metry group p6 (= [6,3]+). of Figure 7, with symmetry group [7,3]+. 

Patterns with Symmetry Group [p+, q] 

There is another subgroup of [p, q] that contains rotational symmetries about the centers of the p-gons 
and reflections across the sides of the p-gons in the tessellation {p, q}. In this case, q must be even for the 
reflections to be consistent; q/2 reflection (mirror) lines intersect at each vertex of {p, q}. This subgroup is 
denoted [p+, q] by Coxeter, where the superscript + is used to signify an orientation-preserving symmetry 
[4]. The pattern of Figure 2 has symmetry group [5+,4] if color is ignored. In [p+, q], p and q play different 
roles, so [p+, q] is a different group than [q+ ,p] (unless p = q). The Euclidean instances of [p+, q] are: 
p4g (= [4+,4]), and p31m (= [3+,6]). Figure 1 shows a pattern from the Alhambra with symmetry group 
p4g if color is ignored. Note that [6+, 3] is not a valid group since 3 is not even. Islamic patterns with 
symmetry groups p4g and p31m appear with slightly less frequency than those with symmetry groups p6 
and p4 among those classified by Salman and Abas (Figure 5.1 of [2]). 

The pattern shown in Figure 9 is from the Alhambra and was one of the ones copied by Escher during 
his 1936 visit to that palace. It is an example of a "y" pattern - so named because their motifs have the 
symmetry of a somewhat spread out Y whose arms make angles of 211" /3 with each other. These are popular 
patterns in Islamic decoration. The Y patterns have symmetry group p31m with each of the arms of the Y 

lying on reflection lines. 
The pattern we show in Figure 10 is what we call a hyperbolic "x" pattern, which is like a Y pattern ex­

cept that the motifs have four arms instead of three. The pattern of Figure lOis the X patterns corresponding 
to the Y of Figure 9. The hyperbolic X patterns have symmetry group [p+, 8], where p ~ 3 (in contrast to 
the Y patterns which have symmetry group [p+, 6]). 

We note that we designed a hyperoolic Y pattern (with symmetry group [4+ , 6]) corresponding to Figure 
9, but Figure 10 turned out to be aesthetically more pleasing. Also, we note the Figure 10 has the same 
symmetry group as Escher's Circle Limit II pattern of crosses. As an aside, about 15 years ago Coxeter 
reversed the process by providing the Euclidean Y pattern (with symmetry group p31m) corresponding to 
the X pattern of Circle Limit II. 



Figure 9: A "y" pattern from the Alhambra with 
symmetry group p31m ( = [3+,6]). 
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Figure 10: A hyperbolic "x" pattern based on the 
Euclidean "y" pattern of Figure 9, having symmetry 
group [3+, 8]. 

Patterns with Symmetry Groups [p, q, r] and (p, q, r) 

The symmetry group [p, q, r] can be generated by reflections across the sides of a triangle with angles 
1r Ip, 1r Iq, and 1r Ir. We have already seen a special case ofthis: when r = 2, [p, q, r] ~ [p, q]. Also, when 
more than one of p, q, and r are equal to 2, we obtain symmetry groups of spherical patterns. So for the rest 
of this section, we will assume that p, q, and r are all greater than or equal to three. If p, q, and r are all 
equal to three, [3,3,3] s:; p3ml. At least two of p, q, and r must be equal in order to obtain a pattern based 
on a regular tessellation: [p,p,q] is based on the tessellation {2q,p}, where each 2q-gon is subdivided into 
2q triangles of angles 1r I p, 1r I p, and 1r I q. 

The orientation-preserving subgroup of [p, q, r] is denoted (p, q, r), and can be generated by any two 
of the rotations by 21r Ip, 21r Iq, and 21r Ir about the vertices of the triangle mentioned above. Because all 
of these symmetries are orientation-preserving, patterns with symmetry group (p, q, r) are chiral, that is all 
of the motifs rotate in the same direction. If p, q, anq r are all equal to three, (3, 3, 3) s:; p3. Figure 11 
shows another pattern that Escher copied from the Alhambra, with symmetry group p3. Figure 12 shows a 
hyperbolic pattern based on that of Figure 11 and having symmetry group (3, 3, 4), which happens to be the 
symmetry group of Escher's most famous hyperbolic pattern Circle Limit III. 

Conclusions and Future Work 

We have developed a theoretical framework that allows us to create hyperbolic Islamic patterns that are 
related to Euclidean patterns. We have shown how to do this for each of the 17 "wallpaper" groups with 3-, 
4-, or 6-fold rotational symmetries. One direction of future work would be to create hyperbolic patterns that 
were related to the remaining wallpaper groups. For some of those wallpaper groups, it is not clear what the 
appropriate hyperbolic generalization is. Other directions of future work could include creating hyperbolic 
versions of other kinds of Islamic patterns, such as Kufic or star patterns. For example, it should be possible 
to generate hyperbolic star patterns by combining the methods above and those of Kaplan [7]. 
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Figure 11: A pattern from the Alhambra with sym- Figure 12: A hyperbolic pattern based on the pattern 
metry group p3 (= (3,3,3». of Figure 11, with symmetry group (3,3,4). 
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