
BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

An Interactive Creation of Polyhedra Stellations with Various 
Symmetries. 

Vladimir BUlatovl 

Department of Physics, 
Oregon State University. 

301 Weniger Hall, Corvallis, OR, 97331, USA 
e-mail: bulatov@dots.physics.orst.edu 

Abstract: 

This paper gives a short introduction to the stellation of polyhedra and describes a web based computer program 
developed by the author. 

Introduction 

A few polyhedral stellations were known to mathematicians since the time of Kepler, who 
constructed them at the beginning of 17th century. He called one of them "echinus". Its modem name is 
the small stellated dodecahedron (Fig. 1). The other he called "ostrea". Its modem name is the great 
stellated dodecahedron (Fig. 2). Though Kepler was not the fIrSt to construct these solids, he was the fIrSt 
to think of them in a mathematical context, trying to fmd new polyhedra with regular faces. Later in the 
19th century Poinsot found two other regular polyhedra which are stellations, namely the great 
dodecahedron (Fig.3) and the great icosahedron (Fig.4). See Peter Cromwell's book "Polyhedra" for 
historical details [1]. 

The interest in polyhedral stellations was renewed after the 1938 publication ofa brochure by 
Coxeter, DuVal, Flather, Petrie, The 59 Icosahedra [2]. The authors used a set of quite arbitrary rules to 
define what a stellation is and, following these rules, enumerated all possible icosahedral stellations. 
Among those arbitrary rules was this one, that the symmetry of any stellation should have at least the 
rotational symmetry of the core polyhedron. The earliest known author to describe stellations having a 
lower symmetry than that of the core is Alan Holden in his book, "Shape Space and Symmetry" [3], 
where he considered the dodecahedron. Several more recent works considered dodecahedral and 
icosahedral stellations with tetrahedral symmetry [4-8]. Magnus Wenninger in his books, Polyhedron 
Models and Dual Models has done some detailed research on polyhedral stellations in application to the 
cuboctahedron and the icosidododecahedron. Also by using the stellation process he has discovered the 
duals of all 53 non-convex uniform polyhedra. [9-10]. Hugo Verheyen in "Symmetry Orbits" uses 
polyhedral symmetry in application to compounds of cubes [12]. In this paper we consider how different 
choices of symmetry can be used to build a vast variety of polyhedral stellations. 

The construction of polyhedra stellations as models was traditionally a very laborious task. For 
more or less complex polyhedra the process usually involved computer generation of so called face 
diagrams and a manual search for appropriate facets in this diagram [9-10]. The author's Polyhedra 
Stellations Applet [11] converts this tedious process into a simple computer point and click operation, 
making it an enjoyable as well as an educational adventure. 
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Polyhedra Stellation 

Polyhedra stellation is a way of creating a new polyhedron from an existing one via a process 
similar to creating a pentagram from a regular pentagon. In the case of a pentagon every side of the 
pentagon is extended in both directions beyond the pentagon's vertices. These extended lines will break 
the plane into 16 areas: the original pentagon, 5 triangles and 10 infInite areas. The pentagon's stellation 
then is any combination of the 6 fInite areas. Often, however, only the most symmetric combination of . 
these shapes, namely the pentagram, is called a stellation. 

Similarly, one can extend the faces of a polyhedron in all directions. The set of these infInite 
planes will divide the three dimensional space into a number of convex regions, some fInite and some 
infInite. Only fmite regions (elementary cells) are used as building blocks .for stellations. We defme a 
polyhedron stellation as· any combination of elementary cells. The polyhedron, which was stellated, is 
called also the core polyhedron. Our defInition of stellation is very loose compare to other defInitions, 
which are often used. The most important difference is that our defmition allows arbitrary symmetry of 
stellation, which allows a wider than usual variety of polyhedral shapes. 

Usually the core polyhedron has some symmetry. This means that there is a set of geometrical 
transformations, which transforms the polyhedron into itself. The complete set of these transformations 
forms a symmetry group of the core polyhedron. The set of transformations is a group in the mathematical 
sense, because the product of any two transformations is again a transformation, which leaves the 
polyhedron invariant. Therefore it should belong to the set. For more detailed discussion of polyhedral 
symmetry see [1]. The number of transformations in the symmetry groups is called the order of the group. 
The symmetry of the core polyhedron allows the division of all elementary stellation cells into an array of 
equivalent elementary cells. We call such an array of symmetrically equivalent elementary cells a 
complete stellation cell. From group theoretical point of view complete stellation cell is the orbit of an 
elementary cell under the action of the symmetry group. 

The icosahedron and dodecahedron have diploid icosahedral group Ih (order 120), the octahedron 
and cube have diploid octahedral symmetry group Oh (order 48), the tetrahedron has diploid tetrahedral 
symmetry group Td (order 24). 

The number of elementary cells in a complete stellation cell may vary, but it should always be a 
divisor of the group's order. For example the polyhedron of symmetry Ih may have complete cells of size 
120, 60, 30, 20, 12, 1 (core polyhedron). 

The complete stellation cell always has the same symmetry as the core polyhedron. Therefore any 
combination of complete stellation cells will have the same symmetry as the core polyhedron. In order to 
introduce more variety into the possible symmetry of stellation we will use arrays of elementary cells with 
lower symmetry than the symmetry of the core polyhedron. The natural choice for such lower symmetry 
is any subgroup H of the original symmetry group G. A subgroup of any symmetry group is a subset of 
geometrical transformations of the symmetry group, which itself is a group. For example, diploid 
icosahedral group h has subgroup C5 (5-gonal group of order 5), which consists of fIve rotations 21TJ7/5 ( n 
= 0,1,2,3,4) about one of the icosahedron's axes of 5th order. We call a stellation subcell of symmetry H 
an array of elementary stellation cells which is invariant under operations of subgroup H. 

The complete stellation cells are arranged into layers, that is, a set of cells which covers all 
previous layers. A more formal defInition of a layer number is this: it is the number of stellation planes 
which will be crossed by a ray front the center of a polyhedron core to some point inside of any 
elementary cell. Layer number ° is the core polyhedron itself. The lowest layers of some polyhedra 
stellations often have only one complete cell. A few upper layers often have holes. 

Every elementary stellation cell has two kinds of facets: top and bottom facets. The top facets are 
parts of planes which are located above the cell relative to the. polyhedron'S center. The bottom facets are 
parts of polyhedron planes located below the cell. We say that a cell is supported if it has adjacent cells 
for every one of its bottom facets. Core polyhedron is the only cell which has no bottom facets and it is 
automatically "supported". Important kinds of stellations are the fully supported stellations. These are 
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stellations with all cells supported. These stellations look more like traditional polyhedra - solid shapes 
without voids. 

Stellation example: Icosahedron stellation 

We will illustrate the general ideas of stellation described above with some examples of the 
stellation of an icosahedron. The choice of this relatively simple icosahedron stellation is to make more 
clear the symmetry approach introduced in the paper. 

For the purpose of model building one needs to have a plot of all faces of the model. It is obvious, 
that all faces lie in the planes of the core polyhedron. Intersections of the extensions of any selected 
polyhedron face with all other face planes are infInite lines, which lie in the selected plane. We will 
eliminate the infInite segments of these lines, which form infInite faces of infInite elementary cells. The 
remaining fInite segments form the so called stellation diagram. Fig.5 shows the stellation diagram of the 
icosahedron with its center core icosahedron attached to it. The icosahedron has only one stellation 
diagram because all its faces are equivalent. Fig.6 shows the complete stellation cell of the fIrst layer 1(0) 
with the stellation diagram attached to it. This complete cell consists of an array of 20 elementary cells -
triangular pyramids attached to every face of the core. Figs. 7 and 8 show three of these elementary cells. 
One facet of each of these elementary cells lies in the plane of the stellation diagram. Two other identical 
facets occupy similar places in the stellation diagrams attached to other icosahedron faces. The bottom of 
each pyramid is a face of the core icosahedron, which in turn has equivalent faces in the center of the 
diagram. 

Not all layers of the icosahedron's stellation are formed by cells of one kind. Layer 4 has 20 
elementary cells of one type (let's say type 0) ,(Figs. 9 and 10) and 60 elementary cells another type (let's 
say type 1) (Figs.ll and 12). Now we will look at one elementary cell from layer 4 of type 0 (Fig.13). 
The fully supported stellation for this cell is shown in Fig. 14. It is clear from this fIgure which icosahedral 
planes were used to form the facets of the elementary cell. The complete stellation cell, formed by an 
array of elementary cells is shown in Fig. 15 (stellation e1 from [2]). The fully supported stellation for this 
cell is shown in Fig. 16 (stellation De from [2]). Now we will choose a symmetry of stellation which is the 
central tetrahedral symmetry T h .;, the symmetry of a cube inscribed in the icosahedron. This causes a split 
in the 20 elementary cells array into two subcells consisting of 8 and 12 elementary cells (Figs. 17 and 
19). ' 

Figs. 18 and 20 show the fully supported stellations for these subcells. It is noteworthy to mention 
that it is easy to mistake the symmetry of the subcell of Fig. 17 for the octahedral symmetry Oh, but is 
really only symmetry Th, because it has no axes of 4th order. 

Use of the stellations applet 

The stellations applet [11] was written to greatly facilitate the process of stellation construction. 
The main purpose of the applet is to help the user fmd and select interesting stellations and to provide 
face diagrams showing patterns useful for making models. The applet will run on any computer system, 
which has java runtime environment. It also runs inside of standard web browsers. 

There are two different user interface widgets, which allow the selection of a stellation. One way 
is to use a list of all stellation cells. They are grouped into layers, cells and subcells (Fig. 21). Cells and 
subcells are color coded to show how many elementary cells they contain. The user can tum on/off any 
cell,' subcell or the whole layer by a mouse click on the corresponding box. A very useful feature is to turn 
on/off all the cells or subcells, which form a fully supported stellation with a given cell on the top. For 
example, the stellation shown in Fig. 22 was created by one mouse click on the topmost cell, which 
causes the inclusion of 73 subcells into the stellation. One can see myriads of these cells in Fig. 22. All 
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together they make a simple and attractive model, which looks like a twisted version of the small stellated 
dodecahedron. 

Another way of selecting stellation cells is to pick up the cell directly from the stellation diagram. 
This is a process less obvious for the user. The first difficulty is that most of the facets on a stellation 
. diagram have two cells attached to them - from the top and from the bottom. Examples are given in Figs. 
23 and 24, Figs. 25 and 26, showing the corresponding complete cells. Facets with top attached cells are 
colored red, with bottom attached cells are colored yellow. Another difficulty is the complexity of 
relationship of stellation facets. An inclusion of a new facet may require addition or removal of a whole 
bonchof other fa~ts, which may often not be obvious, but which is done automatically by the computer. 

Conclusion 

The Polyhedra Stellations Applet is a very powerful tool for constructing new polyhedra. The use 
of different stellation symmeties helps to create new and beautiful shapes, using old familiar solids. We 
consider the Polyhedra Stellations Applet to be very useful because of the aesthetic quality of the shapes 
it allows the user to generate. As an example, Fig.27 -30 represent a several fully symmetrical stellation of 
various polyhedra and Fig. 31 gives some fully supported stellations of the icosahedron with diploid skew 
5-gonal symmetry DSd. The creation of new stellation shapes never was so easy. 
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Figure 1 Small SteUated Dodecahedrom Figure 2. Great SteUated Dodecahedron 

Figure 3. Great Dodecahedron Figure 4. Great Icosahedrom 
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FigureS. Icosahedron stellation. Icosahedron 
(cell 0(0» with attached face diagram. 

Figure 7. Three elementary cells of layer #1 (top 
view) • 

.. 

Figure 6. First stellation of icosahedron (cell 1(0» 
with attached face diagram. 

Figure 8. three elementary celis of layer #1 
(bottom view). 
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Figure 9. Six elementary cells of stellation cell 4(0)­
layer #4, type 0 (top view) 

Figure 11. Nine elementary cells of stellation ce114(1) 
-layer #4, type 1) (top view) 

Figure 10. Six elementary cells of stellation cell 4(0) 
(bottom view) 

Figure 12. Nine elementary cells of stellation cell 4(1} 
(bottom view) 
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Figure 13. Icosahedron and one elementary cells of Figure 14. Fully supported stellation for elementary 
stellation cell 4(0) from figure 5. ceD from the left. 

Figure 15. Stellation cell 4(0) consists 20 elementary Figure 16. Fully supported stellation S{4(0)}. 
cell shown at figure 9. 
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Figure 17. SubceD Th:4(O[O)). Figure 18. FuDy supported steDation SIT h:4(O[O)) } 

Figure 19. Subcell Th:4(0[1]) • Figure20! Fully supported steDation S{Th:4(O[I])}. 
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Figure 21. Cells of a supportedstellation S{I:16(2[l])} of strombic hexecontahedron (dual to 
rhombicosidodecahedron). Selected cells are marked with gray. It consists of 73 stellation cells and few 

hundreds elementary cells, but may be easy generated using one mouse click in the stellation applet. 

Figure 22. Stereo display of the stellation above. 
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Figure 23. Core icosahedron and elementary bottom 
cell for selected facet. 

Figure 25. Core icosahedron and complete bottom cell 
for selected facet. 

Figure 24. Core icosahedron and elementary top cell 
for selected facet. 

Figure 26. Core icosahedron and complete top cells 
for selected facet. It is clear, that this complete cell is 
simultaneously a bottom cell for other facets of the 
stellation plane. 
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