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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

This is a follow-up on a. discussion at the 1999 Bridges conference; it is a topological I geomet
rical study of how the structure of a Moebius band might be applied to bridges and/or buildings, 
with the possibility of creating an intriguing construction on the Campus of Southwestern College, 
to commemorate the series of annual Bridges conferences started in 1998. 

Figure1: M.C. Escher's "Moebius Strip II" © 2000 Cordon Art B.Y., Baarn, Holland [3J. 

1. Introduction 

At the Bridges'99 conference, Jason Barnett gave an inspiring presentation "A Bridge for the Bridges" 
[1]. He showed scale models of spaces reminiscent of Escher structures that combine many different per
spectives in surprising ways. However, Barnett's buildings were realized in 3-space and were designed to 
be readily navigable by human observers. In that session, the idea was put forward that it might be desir
able to construct a monument on the Campus of Southwestern College commemorating the series of 
annual Bridges conferences. Given the interests of the typical conference participant, such a structure 
might well be Escher-like or reminiscent of the shapes of Klein bottles or Moebius bands. Perhaps - and 
most fittingly - such an intriguing shape might be applied to some form of pedestrian bridge crossing a lit
tle creek or connecting two tall buildings. Inspired by those discussions, this paper investigates several 
ways in which the structure of a Moebius band could be imposed onto a functional bridge (Section 2) or 
onto a habitable and usable building (Section 3). We conclude with some Moebius structures that have a 
purely aesthetic purpose (Section 4). 
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The title of this treatise pays homage to a delightful science fiction short story by Robert A. Heinlein, 
"-And He Built a Crooked House-" [4], in which an architect builds a 4-dimensional house in the shape of 
a hypercube. After an earthquake, the house traps its occupants who are then doomed to run around in the 
3-dimensional surface of this structure. Contrary to this unfortunate outcome, our focus is on finding struc
tures that are not only conceptually intriguing, but also sound and of practical use. 

2. Moebius Bridges 

The first idea that comes to my mind when I hear the tenn "Moebius" is that of a belt twisted through 
180 degrees. However, if this idea is applied in a straightforward manner to the construction of a bridge, 
we end up with a surface that is difficult to walk on; after crossing less than half the length of the span, 
travellers would slide off the bridge (Fig.2). Thus the first task is to look for modifications of the basic con
cept to create a more or less level walking surface along the whole length. After that I will explore the pos
sibilities of transfonning the topology of a closed Moebius band into a shape that can serve as a bridge. 

Figure2: A slab with a longitudinal twist -- a key element for a Moebius bridge -- is difficult to walk on. 

2.1 Twisted Surfaces You Can Walk On 

The first and fundamental challenge is to find geometries that are clearly twisted, but on which one can 
still walk, and which will even admit wheelchairs, i.e., surfaces that have a continuous strip of a nearly hor
izontal surface along the whole span of the bridge. A first inspiration may come from ruled surfaces, in 
particular from a single-shell hyperboloid, which exhibits a rather twisted look, but can be composed 
entirely of a bundle of straight lines. The wish to keep a more or less "level path" across the chasm to be 
bridged implies that we also maintain horizontal tangents in the lateral direction. We may model these con
straints with a Bezier patch that gives us sufficient degrees of freedom (Fig.3). 

Figure3: A longitudinal twist can be simulated with a suitably distorted Bezier patch. 

Using five control points in the lateral direction, allows us to create a "flat" zone of adjustable width. 
Along the length of the bridge span this flat zone shifts from one edge of the patch to the other, i.e., at one 
end of the bridge the right-hand wall is pulled high, and at the other end the left-hand wall. This will create 
the impression that the slab has been flipped through almost 180 degrees. In the longitudinal direction, 
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three or four rows of control points are sufficient to define the transition of the cross section from one end 
to the other, and perhaps to impose a slight arching of the bridge for stability and for aesthetic purposes. 

Contemplation of the shape in Figure 3 makes one realize that the main reason that travelers do not 
slide off this bridge is the fact that its cross section is a "hollow" C-shape which offers a spot with a hori
zontal tangent for all of its orientations. We can exploit this idea more directly by sweeping a semicircular 
cylindrical element along the arch of the bridge. We can twist this cross section through 180 degrees and 
still maintain along its whole length a continuous path with a horizontal lateral tangent (Fig. 4). It should 
be noted that on such a surface one could walk either on the inside or on the outside of the C-shape; in the 
latter case we would twist the cross section in such a way that, in the middle of the bridge, the opening of 
the "C" points downwards. However, for a large portion of the span, travellers may not even realize that 
they are walking on an open C-profile; it may just feel like walking along the top of a giant cylinder. I 
believe the sense of "twistiness" of the bridge would be mostly absent in this option. In Figure 4, I show 
my preferred solution, where the profile is oriented like a "U" at the mid-point, and in which travellers 
across the bridge are naturally sheltered most of the way. Of course, towards the ends of the span, some 
railings must be added for safety. 

Figure4: Swept C-shaped cross section with a·longitudinal twist of 1800 also offers a level walking surface. 

2.2 Closing the Moebius Loop 

To shape such a twisted bridge surface into a closed Moebius band, we have to somehow form an end
to-end loop and close it off with the appropriate orientation. This closure could occur in three fundamen
tally different ways: below the walkway, and thus symbolically acting as the foundation or support for the 
walkway (Fig.5a); above the walkway, as a large arch from which the walkway could be "suspended" in 
some way (Fig.5b); and, third, besides the walkway -- perhaps forming a separate alternative walkway. 

FigureS: Closing the loop of the Moebius bridge: (a) as a supporting structure, (b) as a suspension arch. 
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The first alternative leads to a rather straightforward implementation (Fig.5a). This is just a simple, 
singly-twisted Moebius band. All the twist is in the "return path" and support structure. Aesthetic goals and 
engineering functionality might be nicely combined if the "bulge" created by the twisting slab where it 
passes through its vertical orientation is made to touch the middle of the horizontal portion of the slab that 
serves as the actual bridge; it can then act as center support and thus allows the slab to be thinner. Access to 
the bridge surface is also easy in this configuration, since the slab turns downwards at both ends of the 
span. Light-weight, transparent-looking "on-ramps" would connect the main structure to the slopes of the 
trench to be bridged. 

The second alternative develops from an upside-down version of the first. The "roll" of the slab 
through its vertical orientation can now serve as a robust suspension arch from which the walkway could 
be suspended with many thin steel cables (Fig.5b). One difficulty with this arrangement is that the travel
lers will now walk on the "inside" of the structure, and access to this surface has to be provided in some 
way. One solution is to cut openings through the band itself at both ends of the horizontal bridge section 
where the band turns upward. This will produce two doorways, each framed by two columns formed by the 
outer flanges that support the slab. 

Another possibility is to bend the twisted surface laterally away from the main walkway, thereby giv
ing straight access onto the walkway. If the walkway happens to be in a concavity of the main Moebius 
band (Fig.4), then such a bending away to the sides is reminiscent of the swept C-section ribbon sculptures 
of Brent Collins [2] in which he aims to orient the C-shaped profile in such a way that its opening always 
points away from the bending direction of the space curve, i.e., in the negative normal direction of its 
Frenet frame. This results in a ribbon surface of consistently negative curvature. However, a C-shaped pro
file is clearly two-sided; it has an inside and an outside, and it can therefore -not readily be closed into a sin
gle-sided Moebius configuration. To achieve this goal, we may gradually straighten out the C-profile into a 
flat slab, which can then readily be connected back-to-front. This may again lead to a configuration where 
the return path forms a suspension arch (Fig.6). 

(a) (b) 

Figure 6: Closing the Moebius loop through a non-planar space curve and varying its cross section, 
(a) side view, and (b) view from one end looking down the walkway. 
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2.3 Function Follows Form 

So far, all my constructions started with a functional walkway, then I tried to close those twisted sur
face pieces into Moebius loops. Now I will start from various geometrical Moebius configurations and 
then see how such a shape might serve as a bridge. For this purpose, the work of M.C. Escher serves as a 
great source of inspiration. In "Band van Mobius II" he draws a simply twisted band in grid form that 
serves as a climbing structure for'nine ants (Fig.7a). Let's study this shape and see in which way it may be 
turned into a bridge. The portion facing backwards in Figure 7a offers a reasonably flat surface that runs 
most of the length of the whole object. It may serve as a walking surface if the whole structure is oriented 
suitably in space and the twist is redistributed somewhat differently around the loop (Fig.7b). 

(a) 

Figure7: Use of the geometry of Fig. 1 [3J (a) for a bridge design, (b) by walking on part of the surface, and 
( c) by walking on the widened edge of the Moebius strip. 

Alternatively, we could orient this surface downward and thereby tum the front-facing portion of the 
rim of this object into the proper orientation so that it could be walked on. The edge would have to be wid
ened to make a safe and comfortable walkway. This could be accomplished by making the whole band 
much thicker, or by using it only as a support structure and by adding a perpendicular flange onto it to 
serve as the actual walking surface. Since this flange would of course run around the whole Moebius band, 
it would convert the cross section of the band into that of anI-beam. Upon closer inspection of Escher's 
object, it appears that the backward-facing edge of this same part of the Moebius band has a somewhat 
larger longitudinal extent than the front-facing rim, and might thus be more suitable to serve as a bridge 
over a trench or ravine of a given width. But as is evident from (Fig. 7b), some part of that edge is 
obstructed by the crossing slab that we originally considered as the walking surface. This can easily be 
remedied if we a modify the structure so that it intersects itself at the central point (Fig.7c). This self-inter
section may also increase the overall strength of the whole structure. 

M.C. Escher also drew another Moebius band that exhibits three-fold symmetry and which has a built
in twist of 540 degrees (Fig.8a). This basic arrangement also appears in the familiar recycling symbol 
(Fig.8b) created by Container Corporation of America during Earth Day 1970. A contest for graphic art 
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students to design a symbol representing paper recycling attracted over a thousand entries which were 
judged at the Aspen Institute for Humanistic Studies. The winning entry submitted by Gary Anderson, an 
art student at U.C. Berkeley, was modified by William Lloyd into the well-known "chasing arrows" design. 

(a) (b) 

Figure 8: (a) M.e. Escher's "Moebius Strip I" © 2000 Cordon Art B. v., Baam, Holland [3J; (b) recycling 
symbol with same three-fold symmetry. 

Sometimes one encounters a modified form of the recycling symbol that has an overall twist of only 
1800 (Fig.9a). We will explore the usefulness of this structure to create a pedestrian bridge. We follow the 
possibility shown in Figure 7 a of walking on the edge of the Moebius band, rather than on its flat surface. 
Figure 9b shows how one inner section of the edge might be used as a walkway. 

(a) (b) 

Figure 9: (a) Asymmetric recycling symbol; (b) conceptual application to a bridge design. 

However, there is an intriguing possibility to also use the "suspension arch" as a secondary walkway. 
Reminiscent of a strongly arched bridge in a Japanese tea gardens, steps may lead up on the outer edges of 
the suspension arch. On the very top, where the mostly vertically oriented band needs to flip over to make 
the desired Moebius connection, a flat spot might be created suitable for a small observation platform. 
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3. Moebius Buildings 

In 1992 Peter Eisenman designed a Moebius building (Fig. lOa). One gets the impression, that this par
ticular building was purely a mental exercise in the strictest tradition of an architectural design paradigm 
known as "function follows form." It is not immediately clear how this particular form can be structured 
internally to make a set of convenient and usable floors and suites. Another "Moebius Haus" was con
ceived by Van Berkel & Bos who try to capture the endless figure-8-type movement possible in this topo
logy in some internal unstructured space (Fig. lOb). 

(a) (b) 

Figure10: Moebius buildings: (a) a proposal by Peter Eisenman, (b) a concept by Van Berkel & Bos. 

3.1 Form Follows Function 

For this study we assume that the client wants a reasonably traditional office building, say, for a Math
ematics Institute, but one that clearly reflects the shape of a Moebius band. We are not interested in just a 
thin mathematical surface, but in a prismatic structure of substantial volume that exhibits the desired 
"twist." We start our analysis with a cubic module of 32 feet on a side. This is large enough to accommo
date two 12 foot deep offices and an eight foot corridor "across" the building, and two stories in the verti
cal dimension. We first will explore ways of stacking these useful modules so that the essence of a 
Moebius strip is conserved, i.e., if we follow along one face of the prismatic toroid, we expect that it will 
take more than one loop around the ring before we come back to the starting point and that we will visit 
"other" faces of the prismatic structure on this path. 

Three such cube modules in sequence can form either a straight row or a small symmetrical L-shape. 
Four cubes in sequence can form a planar L-shape with one leg twice as long as the other or a planar "Z"/ 
"S" jog structure. But they can also form a twisted, 3D Z-structure, which may appear as a right-handed or 
as a left-handed version. It is the appearance of this twist element that carries a path on the surface of the 
prismatic structure from "one face" to "another". The simplest "twisted" loop can be built from just ten 
such cube-modules (Fig. lla). A path on one of the prism surfaces incurs a twist of 90 degrees on every 
loop around the structure. It thus takes four loops to come back to the starting point, and during this tra
versal we will have visited all the exposed cube faces on the whole structure. 
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But let's assume that the client wants a "normal" Moebius band, in which we return to the starting 
point after only two revolutions. There are many basic configurations in which two twist elements can be 
arranged so that their effect adds up, rather than cancels out, and so that the total prismatic twist around the 
loop becomes 180 degrees. 

(a) (b) (c) 

Figure 11: Twisted configurations created from unit cubes: (a) simplest configuration with a 9(/' twist, (b) 
and (c) two configurations with a complete 1800 Moebius twist. 

One configuration is shown in Figure lIb. The twist elements have been placed at the comer of the 
loop and have been stretched in the vertical direction so that they form entrances into the courtyard I atrium 
of the build!ng. Another possibility, shown in Figure llc, introduces a 3D crossing in the form of.a sky
bridge in order to close the loop with a 1800 twist. Alternatively, this bridge can be straightened out, while 
the connecting path at ground level becomes S-shaped (Fig.12a). Figure 12b gives an impression what an 
actual building, derived from this basic configuration, might look like. 

(a) 

Figure 12: Transformation of Figure llc into (a) a related structure, and (b) into a building sketch. 

3.2 Function Follows Form. 

Now that we have seen that it is indeed possible to create Moebius shapes from rather conventional 
building elements, we might want to make the Moebius shape more apparent. First, and foremost, we 
would like to use a more band-like structure, i.e., the aspect ratio of the rectangle swept along the loop 
should be at least 2: 1. In addition, we want to make the small sides and the long sides of the cross section 
visibly distinct by using different materials. The large faces could be made from glass and steel, which 
would be natural for the window fronts, and the narrower faces could be made from concrete, or could be 
covered with dark, opaque glass. 
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However, just sweeping a 32' by 64' cross section along a circle with continuous twist (Fig.13a) will 
not lead to a practical building geometry. Figure 13b shows a modification of the basic Moebius shape in 
which one end has been squared to form the base of a building and the rest of the loop is connected to it 
with two right-angle turns. This shape can be further deformed until it resembles the bridge structure of 
Figure 12b with an S-shaped return path underneath, but now the return section stands on its small edge 
(Fig. 13c). As a further refinement, the impractical wide span of the bridge can be shortened, by narrowing 
the turns in the S-shaped building section underneath. 

(a) (b) (c) 

Figure 13: Deforming a basic (impractical) Moebius loop into a usable building geometry, (a) through (c). 

Now it is time to look more closely at the internal organization and the resulting requirements for the 
surfac~s of these structures. Clearly the more lightly colored vertical walls of the S-shape should be in 
glass, since they are natural window surfaces. The narrow faces of the prism could then be kept fairly 
opaque. To enhance the visual difference between the two types of surfaces even further, the narrow sur
faces could also be reshaped into wedges, which would show off the Moebius property most dramatically. 
On top of the S-structure, where the wedge runs horizontally as a "roof," it could hide air-handling units, 
and along the vertical edges of the two towers it could accommodate fire stairs or elevator shafts (Fig.1Sd). 
The problem with the structure in Figure 13c is that this opaque face or wedge runs on the sides of the 
bridge on the facades where one would prefer to have a set of good windows; this prime real-estate should 
not be obscured for the purpose of maintaining continuation of the Moebius edge. In Figure 14, 1 explore a 
different way to work around this problem by reversing the roles of the wide and narrow sides of the swept 
cross section. 

(a) (b) (c) 

Figure 14: Starting form a prominent building feature, then closing the loop in various ways (a) through (c). 
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In Figure 14a I started with a dramatic vertical loop cut from a 32' thick slab that has plenty of good 
window spaces on both sides. The narrow Moebius edge runs vertically at the ends of the floors in the two 
towers and also sweeps over the top of the building. Figure 15 illustrates how the space in this prominent 
arch can be put to good use and provide much office space with generous windows. To make the desired 
Moebius closure for the overall structure, we need to connect the front side of one tower with the backside 
of the other. This can be achieved with a spiral loop formed by a low horizontal building branch (Fig.14a). 
In our envisioned Math Institute, this part could accommodate public functions such as the class-rooms, 
the library, the cafeteria, and the reception area. The latter three functions can make good use of skylights 
to accommodate a glass roof as the logical continuation of the glass facades of the main building loop. The 
class rooms could be placed in the lower story or underground. Thus the mostly window-less Moebius 
edge, that needs to run around the horizontal faces of this lower part of the building, could lie just slightly 
above ground level, where vertical windows can most easily be traded off for copious skylights. 

FigurelS: (a) Elevations, and (b) floor plans of the arch in Fig. 14a; (c) cross section of an "on-edge" 
branch of the basic rectangular profile, e.g., as used in Fig. 14c; (d) a variant of the profile with wedges at 
the ends. (e) and (f) two different views of another use of such an arch in a tall building with slanted towers. 

The bottom portion of the structure in Figure 14a is rather larger. We can reduce its area by angling the two 
towers at 90 towards each other. This could change the originally semi-circular slab at the top into a coni
cal- shape (Fig.14b) - a structure that mightbe difficult to build and to outfit with elevators all the way to 
the top floor. Also it is not clear how usable the assignable floor spaces would be in this conical part of the 
building. Thus the concept is further developed in Figure 14c. The conical top section has been replaced 
with just a short, bent bridge with perfectly level floors and vertical walls. In contrast to the bridges in Fig
ure 13, the elongated cross section is now swept in a vertical orientation through this part. This keeps the 
Moebius edge on top and bottom, and maintains good window fronts on the vertical faces. This same 
approach can also be used at the bottom end of the building. The spiral connection between the two towers 
can be made with a vertically oriented sweep, providing much good window front (Fig.14c). 
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One possible drawback with this geometry is that it may lead to rather tall buildings. Even if the swept 
rectangular cross section is reduced to only 30' by 60', an arch tall enough to loop over its own cross sec
tion put on edge would be at about 140' tall. Still I believe this arched configuration of the sweep has a lot 
of potential and can be shaped into attractive and usable buildings. Figure 15e and f show another way of 
closing this dominant arch into a Moebius loop. The legs are bent forwards and backwards like the two 
leaning towers in the "Gate of Europe" in Madrid. This spread must provide enough separation at the bot
tom to accommodate a fairly direct connection between the back-side of the front leg and the front-side of 
the back leg. Again this low, horizontal portion would be provided with continuous skylights that offer dra
matic views of the arch 15 to 20 stories above. 

4. Moebius Sculptures 

A functional bridge or building may be beyond the means that Southwestern College is willing to 
expend on a commemorative construction. Perhaps a pure art object is a viable alternative. In this section 
we explore the realm of artistic Moebius bands and spaces. 

(a) (b) (c) 

Figure 16: Split Moebius sculptures by Keizo Ushio: (a) singly twisted (b) triply twisted. 

Keizo Ushio [5] is a sculptor who has celebrated twisted band structures in many different forms. 
While I am not sure whether he has ever carved an elementary, singly-twisted Moebius band, he has cre
ated doubly and triply twisted bands, and dozens of split Moebius bands (Fig.16a,b). Often his Moebius 
strips are produced by a rectangular cross section swept along a simple space curve with the proper twist so 
that the "front" side of the slab connects to the "back" side after one travel around the loop. Most often 
Keizo Ushio takes such a Moebius band only as the starting point, and then adds extra drama to it by split
ting it along a center line. 

In Keizo Ushio's sculptures typically the large dimension of a wide band is split down the middle, 
resulting in two nearly square prismatic shapes travelling side by side. This is a natural approach for sculp
tures carved from stone. Even Escher's triply twisted Moebius band is split in the same way (Fig. 8a). 
However, for different materials, say, steel, it may be just as natural to split the band from its narrow sides, 
leading to two even thinner cross sections travelling "on top of one another" (Fig. 16c}. This has the intrigu
ing effect of creating a much more pronounced enclosed space between the two parts. That space itself 
now has the topological properties of a Moebius band, even though its bounding inaterial band is orient
able, i.e., double-sided (one side faces the Moebius space and the other side is pointing outward). Since the 
major portion of this paper is concerned with the creation of twisted Moebius spaces accessible to humans, 
I will now focus on a sculpture that emphasizes the enclosed space rather than its bounding material walls .. 
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My proposed "Moebius Space" sculpture is derived from a "split torus" in which the cutting gap 
makes a 180 degree twist while sweeping around the torus. Since this space is the intended focus of our 
attention, I have widened it and also bulged it out to make it look more like a cave. To draw even stronger 
attention to it, I have given its wall a shiny silvery color, while keeping the outside of the torus from which 
it is carved in matte black (Fig.17). 

(a) (b) 

Figure 17: The proposed "Moebius Space" sculpture, (a) computer-generated view, and 
(b) a physical maquette made with a Fused Deposition Modeling machine. 

5. Conclusions and Acknowledgments 

The single-sided Moebius loop is a fascinating geometrical shape- and leads readily to a plethora of 
aesthetically pleasing sculptures. But beyond this purely aesthetic value, the Moebius form can also be 
transformed into practical functions such as buildings or bridges. Given the tight linking of arts and mathe
matics exhibited in the Moebius shape, it would be a very fitting symbol for a commemorative construc
tion for the Bridges Conferences at Southwestern College in Winfield, Kansas. 

This work was partially supported by the National Science Foundation under a research grant to study 
the designer/fabricator interface for rapid prototyping. The synthetic figures and sculpture models have 
been constructed with SLIDE, a modeling and rendering system built by Jordan Smith [6] and Jane Yen. 
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