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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

Centuries ago, Celtic knot patterns were used to decorate religious texts. Celtic knots are formed by 
weaving bands in an alternating over-and-under pattern. Originally, these were finite patterns on'the 
Euclidean plane. Recently such patterns have also been drawn on spheres, thus utilizing a second of the 
three "classical geometries". We complete the process by exhibiting Celtic knot patterns in hyperbolic 
geometry, the third classical geometry. Our methods lead to a unified framework for discussing knot 
patterns in each of the classical geometries. Because of the precision and many calculations required to 
construct hyperbolic patterns, it is natural to generate such patterns by computer. Thus, the patterns we 
show are created by using computers, mathematics, and aesthetic considerations. 

Introduction 

In about the 6th century Irish monks started using what we now call Celtic knot patterns as ornamentation 
for religious texts. The mo$ also created spiral patterns, key patterns, zoomorphic patterns, and decorated 
lettering, but we will only consider knot patterns. Figure 1 shows a simple example of a knot pattern. The 

Figure 1: A simple Celtic knot pattern 

use of this kind of decoration went out of style in about the 10th century, and the methods for creating 
such patterns were lost as well. Subsequently, people who wanted to make Celtic knot patterns had to copy 
existing patterns. That is, until the early 1950's when George Bam invented a method for creating such 
patterns [1]. 
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In the late 1950's, the· Dutch artist M. C. Escher became the first person to create hyperbolic art in 
his four Circle Limit patterns. The pattern of interlocking rings near the edge of his last woodcut Snakes 
(Catalog Number 4.48 of [6]) also exhibits hyperbolic symmetry. The goal of this paper is to take a first step 
toward combining Celtic knot art and hyperbolic geometry. Thus Celtic knot patterns will have been drawn 
on each of the three classical geometries: Euclidean, spherical (or elliptical), and hyperbolic geometry. 
Celtic knot patterns have also been drawn on convex polyhedra, which are very closely related to spherical 
patterns. 

We will begin with a brief review of Celtic knots and hyperbolic geometry, followed by a discussion of 
regular tessellations, which form the basis for our hyperbolic Celtic knot patterns. Finally, we will develop 
a theory of such patterns, showing some samples, and indicate directions of future work. 

Celtic Knot Patterns 

Celtic knot patterns were used in the British Isles to decorate stonework and religious texts from the sixth 
through the tenth centuries. The methods used by monks to create such patterns have been lost. However, in 
.1951, George Bain published a method to create such patterns which he discovered after years of studying 
those ancient patterns. Later, his son, lain Bain, published a simplified algorithm for making knot patterns 
in 1986 [2]. It is lain Bain's method, as explained by Andrew Glassner [3], that we will discuss here. 

The simplest knot patterns can be constructed from a rectangular grid of squares as shown in Figure 2. 
The set of vertices of this grid, thought of as a graph, form the starting point for lain Bain's construction 
and is called the primary grid by Glassner. The center points of the squares form the vertices of another 
rectangular grid of squares as shown in Figure 3 (with its edges extended to the boundary of the primary 
grid). This is the secondary grid. The tertiary grid, shown in Figure 4, is formed by the union of the primary 
grid and the secondary grid. Thus, the tertiary grid is a grid of squares of half the edge width of the squares 
in the primary and secondary grids. 

• • • • • 

• • • • • 

• • • • • 

• • • • • 
Figure 2: The primary grid for a Celtic knot con- Figure 3: The secondary grid for a Celtic knot con-
struction. struction. 

Diagonal lines are drawn in each of the interior small squares of the tertiary grid using the lower-left 
to upper-right diagonal for the upper-left interior square, and then drawing the rest of the diagonals in an 
alternating pattern of lower-left to upper-right and upper-left to lower-right diagonals as in Figure 5. These 
diagonals will form what is called the internal weaving. The internal weaving in this example will be a plait, 
seen in the interior pattern of Figure 1. 
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Figure 4: The tertiary grid - the union of the pri- Figure 5: The diagonals in the interior of the tertiary 
mary grid (heavy lines) and the secondary grid (light grid that form the internal weaving. . 
lines). 

Diagonals are also placed in the small edge squares of the tertiary grid in the same pattern but only 
going halfway to the outer edge as shown in Figure 6. These diagonals form the external weaving, which 
will connect the ends of the internal weaving. Next, at each of the tertiary grid points where four diagonals 
meet, form two paths by connecting the lower-left to the upper-right diagonal, and connecting the upper-left 
to the lower-right diagonal. Following one of the paths, let it go alternately above and below the paths it 
crosses. This can be done in a consistent way by using one kind of crossing on each row of crossing points 
and then using the other kind of crossing on the next row, as in Figure 7. 

Figure 6: The outer diagonals that form the external Figure 7: The over-and-under specification of the 
weaving (in addition to the internal weaving). path. 

Using knot theory terminology, the over-and-under pa~rn formed by the diagonals is the regular pro­
jection (onto the plane) of a knot (a circle embedded in 3-space); it is regular because only two strands cross 
at a point. A "multi-knot" formed by more than one circle in 3-space is called a link. There will be only one 
path if the numbers of rows and columns of vertices in the primary grid are relatively prime. Most Celtic 
knot patterns are the regular projections of knots: there is only one path. The path or paths serve as the 
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centerlines of the bands of the final pattern, which is formed by thickening the paths to form the bands. The 
bands are usually thickened to a width equal to the distance between them (so the standard band thickness 
and the space between them are both equal to half the length of the diagonal of a primary grid square). 
Figure 1 shows the final result for the example we have been studying. Some Celtic patterns use wider 
bands with almost no space between them. Other patterns use thin doubled bands that follow the edges of 
the standard thickness bands. 

More General Patterns 

The interior weaving of the pattern described above is very regular - it amounts to a tiling by alter­
nate rows of left- and right-handed crossings. These crossings are enclosed in kite-shaped tiles, actually 
square tiles tilted at 45 degrees, as shown in Figure 8 (except that the center tile contains a non-crossing, 
as discussed below). The top and bottom vertices of these kite tiles are both primary grid vertices or both 

I secondary grid vertices; the left and right vertices of the kites are vertices of the other grid. 
To obtain more general patterns, one can replace some or all of the "crossing" tiles by either of the 

avoiding tiles shown in Figure 9. We call those tiles vertical or horizontal avoiding tiles because their paths 
avoid either the vertical or horizontal axis of their kite-shaped tile. Each such replacement may increase or 
decrease the number of loops in a link by one, or it may leave the number unchanged. If, after replacing all 
the crossing tiles by avoiding tiles, there is only one loop, it is called a snake by Glassner [4]. 

Figure 8: The kite-shaped tiles underlying a Celtic Figure 9: The vertical (left) and horizontal (right) 
knot pattern. avoiding tiles. 

One can also create a non-rectangular pattern by arranging the crossing and avoiding tiles in any simply­
connected way and then joining the ends of the bands around the perimeter. One method for creating such 
patterns by hand involves lightly drawing the primary and secondary grids and then drawing more darkly 
some of the edges of either grid, with the rule that no dark edges may cross. These dark edges are barrier 
edges that the band cannot cross. In Figure 8 there is a horizontal barrier edge (not shown) connecting the 
left and right (secondary grid) vertices of the center kite. Glassner [3] and Christian Mercat [7] describe their 
versions of this method. Barrier edges are called breaklines by Glassner, and longitudinal and transverse 
walls by Mercat depending on whether they are edges of the primary or secondary grid. 

With the goal of generalizing these techniques to the hyperbolic plane, we next discuss hyperbolic 
geometry, repeating patterns, and regular tessellations, which will form the basis for hyperbolic Celtic knot 
patterns. 
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Hyperbolic Geometry, Repeating Patterns, and Regular Tessellations 

Among the classical geometries, the Euclidean plane, the sphere, and the hyperbolic plane, the latter 
is certainly the least familiar. This is probably due to the fact that there is no smooth distance-preserving 
embedding of the hyperbolic plane into ordinary 3-space, as there is for the sphere (and the Euclidean 
plane). However, there are models of hyperbolic geometry in the Euclidean plane, which must therefore 
distort distance. 

Figure 10: The regular tessellation {6, 4} in heavy Figure 11: An example of the hyperbolic parallel 
lines with dots at its vertices, its dual tessellation property: a line t, a point P not on t, and two lines 
{4,6} in light lines, and common radii of the 6-gons through P not meeting t. 
and 4-gons in dashed lines. 

One of these models is the Poincare circle model, which has two useful properties: (1) it is conformal 
(i.e. the hyperbolic measure of an angle is equal to its Euclidean measure) - consequently a transformed 
object has roughly the same shape as the original, and (2) it lies entirely within a bounding circle in the 
Euclidean plane - allowing an entire hyperbolic pattern to be displayed. In this model, the hyperbolic points 
are the interior points of the bounding circle and the hyperbolic lines are interior circular arcs perpendicular 
to the bounding circle, including diameters. For example, all the arcs are hyperbolic lines in Figure 10. 

By definition, (plane) hyperbolic geometry satisfies all the axioms of (plane) Euclidean geometry except 
the Euclidean parallel axiom, which is replaced by its negation. Figure 11 shows an example of this hyper­
bolic parallel property: there is a line, t, in Figure 10 (the vertical diameter), a point; P, not on it, and more 
than one line through P that does not intersect t. 

Because distances must be distorted in any model, equal hyperbolic distances in the Poincare model are 
represented by ever smaller Euclidean distances toward the edge of the bounding circle (which is an infinite 
hyperbolic distance from its center). All the curvilinear hexagons (actually regular hyperbolic hexagons) in 
Figure 10 are the same hyperbolic size, even thought they are represented by different Euclidean sizes. 

A repeating pattern in any of the classical geometries is a pattern made up of congruent copies of a 
basic subpattern or motif. The motif for the pattern of Figure lOis a curvilinear right triangle with a dashed 
hypotenuse and thick and thin lines for legs. Also, we assume that a repeating pattern fills up its respective 
plane. It is useful that hyperbolic patterns repeat in order to show their true hyperbolic nature. 
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An important kind of repeating pattern in any of the classical geometries is the regular tessellation by 
regular p-sided polygons, or p-gons, meeting q at a vertex; it is denoted by the SchHifti symbol {p, q}. We 
need (p - 2)(q - 2) > 4 to obtain a hyperbolic tessellation; if (p - 2)(q - 2) = 4 or (p - 2)(q - 2) < 4, 
one obtains tessellations of the Euclidean plane and the sphere, respectively. Figure 10 shows the hyperbolic 
tessellation {6,4} in heavy lines with a 6-gon centered in the bounding circle (the center of the bounding 
circle is not a special point in the Poincare model, it just appears so to our Euclidean eyes). Figure 10 also 
shows the hyperbolic tessellation {4, 6} in light lines with one of its vertices centered in the bounding circle. 
The dashed lines in Figure 10 do not fonn a regular tessellation, but when p = q the analogous dashed lines 
fonn the regular tessellation {4, p}. 

If we assume for simplicity that p ~ 3 and q ~ 3, there are five solutions to the "spherical" inequality 
(p - 2)(q - 2) < 4: {3,3}, {3,4}, {3,5}, {4,3}, and {5,3}. These tessellations may be obtained by 
"blowing up" the Platonic solids: the regular tetrahedron, the octahedron, the icosahedron, the cube, and 
the dodecahedron, respectively, onto their circumscribing spheres. In the Euclidean case, there are three 
solutions to the equality (p - 2)(q - 2) = 4: {3,6}, {4, 4}, and {6,3}, the tessellations of the plane by 
equilateral triangles, squares, and regular hexagons. There are infinitely many solutions to the hyperbolic 
inequality (p - 2)(q - 2) > 4. This is summarized in Table 1 below. 
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o -Euclidean tessellations 

o -spherical tessellations 

* - hyperbolic tessellations 

Table 1. The relationship between the values of p and q, and the geometry of the tessellation {p, q}. 

For each tessellation {p, q}, its dual tessellation is {q, p}, whose vertices are at the centers of the p­
gons of {p, q} and whose edges are perpendicular bisectors of the edges of {p, q}. Figure 10 shows the 
tessellation {6, 4} in heavy lines and its dual tessellation {4, 6} in thin lines. Of course the dual of the dual 
of a regular tessellation is just the original tessellation. If p = q, the tessellation is self-dual: {3,3} is the 
spherical version of the regular tetrahedron, {4,4} is familiar Euclidean tiling by squares, and {5, 5}. {6, 6}, . 
{7, 7}, ... are hyperbolic. 

This completes our discussion of hyperbolic geometry, repeating patterns, and regular tessellations. 
Next, we use these concepts to develop a theory of hyperbolic Celtic knot patterns, which is actually valid 
in all three of the classical geometries. 
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A Theory of Hyperbolic Celtic Knot Patterns 

As we saw above, the method for creating knot patterns that was developed by lain Bain and others is 
based on the regular tessellation of the Euclidean plane by squares. We extend that method to one based on 
any regular tessellation of one of the classical geometries. The tessellation {p, q} itself serves as the primary 
grid, its dual, {q, p}, defines the secondary grid, and their union is the tertiary grid. In Figure 10, where 
p = 6 and q = 4, the primary grid is shown in heavy lines and the secondary grid in thin (solid) lines. The 
dashed lines in Figure 10 define a tessellation by kite-shaped tiles - rhombuses with vertex angles of 27r / p, 
27r/q, 27r/p, and 27r/q (with vertices alternately at the centers and vertices of p-gons of the tessellation 
{p, q}). If one starts with the Euclidean {4, 4} tessellation, the rhombuses are actually squares tilted at a 
45-degree angle, as shown in Figure 8. 

Celtic knot patterns have two characteristics: (1) no more than two bands cross at a point, and (2) any 
one band goes alternately over and under other bands that it crosses. Such a pattern can be obtained if all the 
rhombuses are filled in only with left crossing tiles or only with right crossing tiles. Looking at a rhombus 
from a primary grid vertex, if the nearest band coming from the right is on top, it is a right crossing tile, 
otherWise it is a left crossing tile; both kinds are shown in Figure 12 (the rhombuses shown are the ones to 
the right of the center of the bounding circle in Figure 10). Figure 13 shows a complete pattern composed 
of right crossing tiles based on the {4, 5} tessellation. Such a Celtic pattern is called a regular weaving or 
plait. The central pattern in Figure 1 is another example - of the standard Euclidean weaving. 

'" '" "'X....... ...... X.... ... 
< > < > , " , , , , , '. '. 

Figure 12: A left crossing tile (left) and a right cross- Figure 13: A regular weaving or plait based on the 
ing tile (right), with dots at the primary grid vertices. {4, 5} tessellation. 

The bands of a regular weaving based on the tessellation {p, q} follow the edges of the uniform tessel­
lation (p.q.p.q) (also called Archimedean or semiregular tilings by some authors). The edges of (p.q.p.q) 
are formed by connecting the midpoints of adjacent edges of the p-gons of {p, q}. Those midpoints serve 
as the vertices of (p.q.p.q), each of which is surrounded by a p-gon, a q-gon, a p-gon, and a q-gon (which 
explains the notation). Figure 14 shows the uniform tessellation (4,5,4,5) underlying the regular weaving 
knot pattern of Figure 14. Since p-gon edge midpoints are also q-gon edge midpoints in the dual tessellation 
{q, p}, a regular tessellation and its dual produce the same regular weaving - which is not surprising since 
p and q play symmetrical roles in (p.q.p.q). 
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There are three regular spherical weavings, which are based on the self-dual tessellation {3, 3}, and on 
the two pairs of duals, {3,4} and {4,3}, and {3,5} and {5,3}. The weaving based on {3,3} traces the 
edges of the "uniform" tessellation (3.3.3.3), which is actually the regular tessellation {3,4}, the blown­
up version of the octahedron. There is a band in each of three mutually perpendicular planes through the 
center of the sphere containing the {3, 3}. These three bands are linked, forming Borromean rings. Glassner 
shows such a weaving based on a cube rather than an octahedron (Figure lOa of [5]). The octahedron is 
the intersection of the tetrahedron {3, 3} and its dual, which together form the stella octangula In fact, the 
regular weaving based on any self-dual tessellation {p, p} traces the edges of the regular tessellation {p, 4}. 
The weaving based on the pair {3, 4} and {4, 3} traces the edges of uniform tessellation (3.4.3.4), which is 
the spherical version of the cuboctahedron. Last, the weaving based on the pair {3, 5} and {5, 3} traces the 
edges of uniform tessellation (3.5.3.5), which is the spherical version of the icosadodecahedron. Glassner 
shows a version of this weaving in Figure 18 of [5]. 

There are only two regular Euclidean weavings, which are based on the self-dual tessellation {4, 4}, and 
on the dual pair {3, 6} and {6, 3}. The weaving based on {4, 4} is just the standard Euclidean weaving seen 
in the center of Figure 1, which is the basis for most Celtic knot patterns. The weaving based on {3, 6} and 
{6, 3}, with its triangular and hexagonal holes, is sometimes seen in the caning for the seats of chairs. 

There are infinitely many regular hyperbolic weavings. They are either based on the self-dual tessella­
tions {p,p} for p ~ 5, or on the dual pairs {p, q} and {q,p}, where p =I q and (p - 2)(q - 2) > 4. Figure 
15 shows the weaving based on the self-dual {5, 5} tessellation, and Figure 13 shows the weaving based on 
the pair {4, 5} and {5, 4}. 
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Figure 14: The uniform tessellation (4.5.4.5) under- Figure 15: The regular weaving based on the tessel-
lying the regular weaving of Figure 13. lation {5, 5}. 

More general Celtic knot patterns may be obtained by replacing some of the crossing tiles of a regular 
weaving with avoiding tiles. Figure 16 shows the two kinds of avoiding tiles, which are distinguished by 
the diagonal of the tile rhombus that their paths avoid (as in Figure 12, the rhombuses shown are the ones 
to the right of the center of the bounding circle in Figure 10); Figure 9 shows the avoiding tiles for the 
standard Eulidean weaving (based on {4, 4}). One of the diagonals of each rhombus is an edge from the 
underlying tessellation {p, q}, and the other diagonal is an edge from the dual tessellation {q, p}. Figure 17 
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Figure 16: A p-gon edge avoiding tile (left) and a Figure 17: A Celtic knot pattern of right crossing 
q-gon edge avoiding tile (right). tiles and p-gon edge avoiding tiles. 

shows a pattern of alternating right crossing tiles and p-gon edge avoiding tiles. Figure 18 shows a pattern 
of alternating right crossing tiles and q-gon edge avoiding tiles. 

One of the 'rules of Celtic knot patterns is that paths cannot avoid both diagonals of a rhombus (there 
would be no way to connect the ends the paths coming into that tile). Thus, if we want to construct Celtic 
knot patterns from rhombus tiles, our collection of basic tiles is complete, consisting of the two kinds of 
crossing tiles and the two kinds of avoiding tiles. 

It is possible to further generalize the methods above to apply to non-rhombic quadrilateral tiles. For any 
quadrilateral, there are only four ways to connect ends of bands coming into it across each of its four sides: 
the two kinds of crossing configurations and the two kinds of avoiding configurations. Glassner has used 
non-rhombic quadrilaterals to construct several of his patterns in [5]. As an example, if we have a pattern of 
triangles upon which we would like to draw a knot pattern, we could first subdivide the triangles into three 
quadrilaterals by connecting the triangle's center to the midpoints of its sides. 

We will apply this method to the construction of what we call Celtic ring patterns - rings interlocked 
in the over-and-under pattern characteristic of Celtic knots. We start by subdividing the p-gons of the 
tessellation {p, q} into p isosceles triangles with angles 211" /p, 11"/ q, and 11"/ q, as shown in the central p-gon 
in Figure 19 (where p == 6 and q = 4). Then we subdivide each triangle into three quadrilaterals (shown 
for one of the isosceles triangles in Figure 19). Finally, we place a crossing tile in each of the quadrilaterals, 
producing the final ring pattern of Figure 19. Note that the crossing is pushed as far as possible toward one 
vertex of the quadrilateral. Figure 19 shows the pattern of interlocking rings that Escher used near the edge 
of his last woodcut, Snakes (Catalog Number 448 of [6]). 

This finishes our discussion of the theory of hyperbolic Celtic knot patterns and the methods for creating 
them. Of course, the theory and methods also apply to each of the three classical geometries as well. In the 
final section, we indicate directions of future work. 

Future Work 

We have presented a theory of Celtic knot patterns and methods for creating such patterns in each of 
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Figure 18: A Celtic knot pattern of right crossing 
tiles and q-gon edge avoiding tiles. 

Figure 19: An interlocking "Celtic ring" pattern 
showing part of the underlying {6, 4} and some of 
the triangles used in the construction, with one of 
them subdivided into three quadrilaterals. 

the three classical geometries. Some natural directions of future work include extensions to hyperbolic knot 
patterns not based on regular tessellations, and the creation of hyperbolic versions of other kinds of Celtic 
patterns, such as key patterns, spiral patterns and zoomorphics. 
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