BRIDGES
Mathematical Connections
in Art, Music, and Science

On Understanding the Search Problem for Image Spaces

Gary R. Greenfield
Department of Mathematics & Computer Science
University of Richmond
Richmond, VA 23173, U.S.A.

E-mail: ggreenfi@richmond.edu

Abstract

We consider the problem of analyzing the visual imagery that can be found in a neighborhood of just one
image selected from a visual image space. The image space we shall explore is a variant of the space of
“expressions” as formulated by Karl Sims. Sims’ expressions are rooted trees that can be manipulated and
searched using the art-by-choice technique known as “evolving expressions.” We present a search
methodology and give examples from the catalog of imagery we obtained in searching a neighborhood of a
fixed image which contained in excess of 1020 instances of possible images. We draw conclusions about
what this portends for future work on search engines developed for exploring artistically non-linear spaces.

1. Introduction

One approach to harnessing the computational resources of the computer for assisting in generating
images for aesthetic purposes is to work in a setting where images are described completely in
mathematical terms. When each possible image has a brief mathematical description and there are
trillions of mathematical descriptions available, the nature of the creative process shifts from
constructing a desired image to searching for a desired image. The searching method that has
received the most attention is known as the art-by-choice paradigm. There are two obstacles to
overcome when using this method. First, one must develop tools for sifting through the images.
Second, one must have some understanding of the relationship between similar mathematical
descriptions and their resulting images. In this paper we focus primarily on the second obstacle. By
working under controlled conditions, we attempt to learn about the visual diversity that can result
from searching images that are closely related mathematically. This leads us to speculate about the
future of semi-automatically generating images.

Art-by-choice methods rely on enhanced computer processing capabilities to search for visual
imagery based on user-guided aesthetic principles. As these methods become more well-known and
widespread [7] [8] [4], it becomes critical to learn more about the limitations and difficulties of the
central concept underlying this process — exploring regions of non-linear spaces whose “points” are
really mathematical descriptions of visual images. In investigating this unique form of computer
generated abstract art, with its close ties to algorithmic art and image processing, we shall attempt to
obtain some evidence about the size and complexity of the typical image space that must be
searched, and to consider how our first generation tools for searching within such spaces are able to
cope with ambient image coherence and image variation. More precisely, we shall restrict our search
to roughly 4x10'°images which form a neighborhood of images all of which are “genetically related”
to one fixed base image. We wish to gauge the extent of the variation within the neighborhood

42 Gary R. Greenfield

and to obtain information about how difficult it is to locate visually interesting (i.e., aesthetically
valuable) variations. We shall describe in the sequel an experiment conducted over the course of
a four month period on an art-by-choice system of our own design [5] which we hope sheds some
light on these matters.

2. Background

We define an image space to be a mathematical object consisting of “points” with the property
that each point can be associated with a (two-dimensional) image that can be viewed on a computer
output device such as a color monitor. Thus “points” can correspond either to algorithms for
generating such images or “points” can correspond to (mathematical) data for input into software
systems for generating such images. We distinguish between an image space that is (artistically)
linear, meaning that nearby points generate closely related images, and one that is (artistically)
non-linear, meaning nearby points may generate wildly different images. Clearly, nonlinear spaces
are visually richer, but at first glance it would appear that controlling or guiding searches within
such spaces is problematic.

Appealing to a biologically inspired metaphor, many practitioners of the art-by-choice search
paradigm view the points of an image space as genomes, whence the search for images within image
space is analogous to following an evolutionary trajectory in image space. This idea seems to have
originated with Dawkins [2], but came to prominence in the computer art world through the efforts
of Latham [9] and Sims [8]. In addition to our own attempts that we shall describe in detail below,
we should mention that Rooke (as described in Voss [11]) and Ibrahim [6] have also exploited this
approach in their work.

There is an important difference in the way Latham and Sims designed points/genomes for
their image spaces. For Latham, a genome is a vector — an array of drawing parameters — in a
twenty-four dimensional real vector space. Though Latham’s resulting image space is highly non-
linear in the sense described above, the Latham-Todd solution to the search dilemma in this space
is “steering.” A record of previous movement within the space helps predict distance and direction
for future exploration. For Sims, a genome is a mathematical expression — an expression tree —
which can be interpreted to yield the visual image. Regardless of how the genome is defined, the
key contribution, due to Dawkins, is to make evolution a user-directed process by selecting a small
population of genomes, mutating, mating, or otherwise evolving the genomes within the population
according to an evolutionary algorithm, and then displaying the new population of images so that
the image development cycle can continue.

Since Sims’ expressions are rooted trees, Sims’ image space is the infinite-dimensional space of
rooted trees. The fact that Sims’ image space is more non-linear than Latham’s is neatly pointed
out by Margaret Boden, who describes what is taking place in the context of agents rather than
genomes [1]:

[Sims] results are always “viable,” in the sense that the newly transformed code will
generate some visible image or other. But the process is utterly undisciplined. Although
it could be used to help graphic designers come up with images they would never have

On Understanding the Search Problem for Image Spaces 43

thought of themselves, it cannot be used to explore or refine an image space in a
systematic way. However, that is possible if the mutating agents are allowed to alter
only the superficial parameters of the code. Significantly, these less powerful agents are
preferred by [Latham].

Our objective is to make precise notion of “nearby” points in a Sims’ style system by fixing a
base genome and considering all possible mutations that preserve the rooted tree structure. In the
next section, we shall introduce our Sims’ style system, which is a hybrid model that strives to
make exploration of an image space of expressions a more disciplined process.

3. Our Mathematical Model for Expressions

In this section we give a formal model for expressions as rooted trees, as well as our algorithm
for converting expressions into images. We use the words ezpression, rooted tree, genome, and point
(of image space) interchangeably. Roughly, the idea is to define a small number of mathematical
entities that will constitute a set of visual primitives which can be combined in a seemingly endless
number of ways to form the space of images. By themselves, the primitives appear rather dull.
There are several color ramps including linear, curvilinear, and radial ones. There are also some
simple two-dimensional patterns, one or two of which look “fractal.” The subtle feature of our
method is that at every stage during the process of building up an image from primitives we
can gently perturb the description by invoking “drift coefficients.” These numerical values induce
the color shifts, distortions, magnifications, and disruptions that provide additional detail and
variation. From the mathematical description that we assemble, the ezpression, we can perform a
computation for each pixel, the evaluation, to generate the visual image. A bottleneck arises from
the large number of evaluations that have to be carried out to generate a full size image.

To prepare for the formal description, we let V = {u,v,w, c,e} be a set of variables which may
appear in the leaf nodes of our rooted trees. When an image is generated from an expression by
evaluating the expression, the coordinate pair (u,v) will correspond to a point in the unit square.
The leaf variables ¢ and w will be used to indicate when the leaf nodes will only be accessed
for coefficients (see below), hence they will always assume the value zero when the expression is
evaluated. The variable e is reserved for “indirection” which will be explained later. At internal
nodes of our rooted tree, we allow functions in either one or two variables accordingly as the
node has either one or two children. The set of admissible functions comprise our set of primitive
functions. For convenience and efficiency all functional inputs and outputs are required to lie in
the unit interval I. Thus, we must construct a set of (normalized) function primitives F, where
each primitive is defined on either the unit interval I or on the unit square I x I. Finally, we add
one more feature which vastly enlarges the number of points in our image space while trying to
maintain a coherency between images obtained from nearby image points within the space. The
idea is to attach drift coefficients to each node. The coefficients are a drift multiplier, a, and a drift
constant, b, which are used to define an affine transformation local to each node. We are ready for
a formal definition of an expression.

DEFINITION 3.1. An ezpression is defined recursively to be a node (a b G), where a and b are
nonnegative real constants and either G € V or G € F. If G € F, then each argument of G must

44 Gary R. Greenfield

again be a node.

EXAMPLE 3.1. Assume F contains the normalized sine and cosine functions, nsin: I — [
defined by nsin(z) = 0.540.5%sin(27z) and ncos: I — I defined by ncos(z) = 0.5+0.5%cos (27z).
Assume further that F contains the square root function nsqt and the function nmin(z,y) =
min(z,y). Then, omitting superfluous parentheses, according to our definition a valid expression
is:

0.05 0.38 nmin(0.54 0.09 nsin(0.42 0.52 u), 0.03 0.69
ncos(0.22 0.90 nsqt(0.04 0.63 v))).

DEFINITION 3.2. An expression (a b G) is evaluated at a point (z,y) € I x I using the recursive
evaluation rule £: I x I — I given by:

E(abG)=a*x&(G)+b (mod 1),

where, if G € V, then
0 fG=c,orG=w
E(G)=X z fG=u
y ifG=v

and, if G € F is a function in d variables whose arguments are the nodes n1,...,ng4, then
E(G) = G(E(m), ..., E(ng)).

Of course, here we are only allowing d to be one or two.

While the formal model explains how the imaging algorithm is implemented, its details may
obscure the relatively straight forward computations that yield images. An example may help to
clarify the algorithm.

EXAMPLE 3.2. To visualize or “render” the expression

0.05 0.38 nmin(0.54 0.09 nsin(0.92 0.42 u), 0.04 0.63 v)
as a 100 x 100 pixel image, we convert the pixel address (m,n) to the point with coordinates
(z,y) € I x I where £ = m/100 and y = n/100 and then evaluate the expression at (z,y).

Therefore at the pixel with address, say (85,30), evaluation would proceed in stages producing
intermediate values F1, E5, F3 and final value E as follows:

Ey = £(0.04 0.63 v) = 0.04-0.30 + 0.63 = 0.012 (mod 1),

E = £(0.92 0.42 u) = 0.92-0.85 + 0.42 = 0.202 (mod 1),

3 5(0 54 0.09 nsin(Es)) = 0.54 - 0.977 + 0.09 = 0.617 (mod 1),
£(0.05 0.38 nmin(E3, E1)) = 0.05 - 0.617 + 0.38 = 0.411 (mod 1).

Using a look-up table, the final value E is converted to a color which is then assigned to the pixel.
Though images appear here in gray scale giving some sense of image contrast rather than image
color, in fact, the same one hundred and eighty color palette — a palette closely resembling the
ordinary color spectrum — was used for all images generated.

On Understanding the Search Problem for Image Spaces 45

Figure 1: Background image (left) and base image (right).

The previous example shows how the evaluation map £ is used to manage the pointwise com-
putation of an expression after inputs are assigned to those variables which are present at the leaf
nodes of the expression. Notice how the presence of drift coefficients affects the node evaluation
algorithm: after passing through the function primitive, but before being used as an input to the
parent node, the intermediate result is perturbed by the linear equation determined using the node’s
drift coefficients and then only the fractional part of that result is passed up to the parent node.

Expressions in which the variable e occurs at a leaf cause evaluations to be redirected to a user-
specified “background” expression, say H, when one is present. If there is no background image
present, then e is treated like the leaf variables ¢ and w. Formally, at the point (z,y) € I x I,

£(e) = E(H) if “background” expression is present
10 otherwise.

We think of occurrences of the variable e in an expression G as providing “sockets” for feeding
the background image defined by H into the base image G. Figure 1 shows the base image and
background image we shall use throughout this paper, while Figure 2 shows the result of feeding
the background image into the base image through the available e sockets, yielding an image which
we call Emergent Blue.

As an infix expression, the base image that we selected, which was originally “evolved” in 1992,
is given by,

0.85 0.20 nvee(0.58 0.06 nmod(0.85 0.20 nvee(0.58 0.06

nmod (0.79 0.66 nabs(0.08 0.60 nsin(0.94 0.08 c)) 0.91 0.98

nand(1.00 0.46 nsqt(0.34 0.17 v) 0.32 0.63 u)) 0.90 0.09 npwr

(0.80 0.10 nmod(0.55 0.53 e 0.19 0.92 nnot(0.59 0.87 u))

0.14 0.33 nsin(0.80 0.50 e))) 0.08 0.22 nabs(1.00 0.54 e))

0.90 0.09 nmin(0.80 0.10 nmod(0.62 0.96 v 0.61 0.54 v) 0.02 0.19 c¢))

46 Gary R. Greenfield

Figure 2: Emergent Blue, obtained by “compositing” the background and base images of Figure 1.

4. Nearby Points of Image Space

To explore our image space, we must start with the image we have selected. Its mathematical
description will only be altered in ways such that subsequent images will have similar mathematical
descriptions. This is done by replacing existing primitives by other available primitives and by
adjusting. the way intermediate images are combined by regulating the drift coeflicients. There
is a biological analogy. If we think of the expression we wish to start with as a genome then it
becomes the progenitor of a species and all subsequent images must be genetically similar because
genetics imposes limits on the kind of variation that is possible within the genetic makeup of the
progenitor’s descendants.

The rooted tree for the base image we are using is shown in Figure 3. In Figure 3 the normalized
primitives of F which were given in infix form in the previous section are now referenced using
their symbolic equivalents, and the drift coefficients have been temporarily suppressed. The tables
below establish the correspondence between infix and symbolic codes, and also provide abbreviated
descriptions of the primitives. The nine primitive functions of one variable appear in Table 1 and
and the nine primitive functions of two variables appear in Table 2. As we noted previously, these
(normalized) primitive functions are designed and crafted for their two-dimensional characteristics
when imaged on the unit square. '

The base image for Emergent Blue has twenty-five nodes apportioned as follows: ten nodes
.are leaves containing variables, six nodes contain one variable primitive functions, and nine nodes

On Understanding the Search Problem for Image Spaces 47

Infix | Code | Description

nsin | S | f(u) =0.5+ 0.5 *sin(2 * 3.1415927 x u)

ncos C | f(u) =0.5+0.5%cos(2 * 3.1415927 x u)

nexp| E | f(u)=exp(u—1.0)

nlog | L | f(u)=log(u+ 1.0)/0.69314718

nabs | A | f(u) =[2xu—1]

nsqt | T | f(u)=+u

nsqr | R | f(u) =4.0% (u—0.5) % (u — 0.5)

ncub | U | f(u) =4.0% (u 0.5) * (u—0.5) * (u — 0.5) + 0.5
nnot N | f(u)=10- '

Table 1: Primitive functions of one variable.

Infix | Code | Description

nadd + flu,v) = 0.5 (u+v)

nmul * flu,v) =ux*v

nmod A f(u,v) is the remainder when u is divided by v

nmin - f(u,v) = min(u, v)

mmax | - f (u,v) = max(u,v)

npwr - flu,v) =u?

nand & f(u,v) is the bitwise logical and of u and v

nvee I f(u,v) is the bitwise logical or of u and v

ncir | O flu,v) =2.0% ((u—0.5) * (u—0.5) + (v—0.5) x (v—0.5))

Table 2: Primitive functions of two variables.

48 Gary R. Greenfield

contain two variable primitive functions. Since the set of primitive functions contains nine one
variable primitives and nine two variable primitives, and for two-dimensional images there are four
distinct variables (recall both ¢ and w will always be evaluated as zero and there is a background
image present for use with e), the number of “nearby” points we wish to explore is nominally

99 x 62 x 10* ~ 3.9 x 1019,

Further, since each node has two drift coefficients, a multiplier a, with 0 < a < 2, and a constant b,
with 0 < b < 1, both of which we resolve to within 0.01, each “point” via drift has 253°° neighbors
within a drift neighborhood! Of course, there are not really that many points in the neighborhood
of our base image. There is a certain amount of redundancy in the genome itself as well as dormant
areas within the genome (the biological analogy of introns and extrons comes to mind), and as
artificial life experiments using this setup have revealed, many of the mutations are superficial [4].
Moreover, since (1) the base image was originally evolved with each multiplier drift coefficient a in
the unit interval, (2) the software we are using to explore image space severely restricts the amount
of drift that can accumulate at internal nodes, and (3) drift will have no effect at latent sites of the
genome or negligible effect at many active sites (for example, this can occur when the multiplier
a is close to zero and therefore the constant b dominates), it would be more realistic to assume
that the number of distinct “nearby” points in the neighborhood of our base image is closer to 102
rather than 3.9 x 1019 x 25300 ~ 9.4 x 1038, One should recognize, however, that our image space
is infinite dimensional and we are discussing the nearby points of only one fixed base point.

5. Searching Nearby Points

The system we described in [5] for following evolutionary trajectories within image space was
used here in a more restrictive fashion in order to make sure that we examine only those points
that are nearby the base image. The overall objective of the system is to specify algorithms for
modifying expressions. This establishes the genetic “rules” which determine how expressions can
evolve.

Because our goal for this project was to explore only a neighborhood of one point and not all of
image space, we were only able to use a few of the algorithms that were available to evolve genomes
— those algorithins that preserve the rooted tree structure (as shown in Figure 3) of the base
image. This restricted suite of algorithms “operate” on existing expressions in the neighborhood
of the base point. The names we gave to the restricted suite of algorithms together with their
descriptions are listed below.

e DIFFER, which substituted for a primitive function at one internal node, a node that was
randomly chosen in the expression;

e VARY, which replaced variables in approximately half the leaves in the expression;

e PERTURB, which adjusted the drift coefficients at each node by an amount that was weighted
inversely with respect to the node’s depth, so that coeflicients near the root drifted minutely,
while coefficients close to leaves drifted up to a maximum value controlled by a global param-
eter;

On Understanding the Search Problem for Image Spaces 49

1] 7)) p.—‘
- [—1@_.
Rb—'
=
4] _.6&_,
6&—‘
= Z — >

o .
L]
0\.\a.--—
- — | =
Lo B .

Figure 3: The rooted tree for the base image shown in Figure 1. (See text for details.)

50 Gary R. Greenfield

e SLIDE, which shifted the drift coefficient b at the root of the tree thereby resulting in a color
shift of the image;

e FEATHER, which re-randomized all the drift coefficients at the leaves. (It turned out that
this was the least effective algorithm.);

e CROSS, which performed a uniform crossover between two existing points in the neighbor-
hood of the base point to yield a third point in the neighborhood of the base point which had
approximately one-half of its nodes identical to the first point and the other half of its nodes
identical to the second point.

In simpler terms, we have tried to describe a user interface that displays the visual renderings of
a small group of expressions but whose user controls can only affect the mathematical descriptions of
those expressions. Thus, exploration of nearby images in the neighborhood of an image is indirect,
because it is accomplished by altering the contents of the expressions as given in Figure 3, not by
directly altering the images themselves. Next, we give a more explicit account of how we actually
carried out the exploration.

Since every time an expression modification algorithm is invoked all the drift coefficients in all
the nodes in the expression it produces are subject to drift of up to a maximum amount of 0.05, the
working strategy was to rely on the DIFFER algorithm to effect a sequence of one-node-at-a-time
mutations to an expression already available in the population and then to periodically apply the
VARY algorithm to the newly evolving expression in order to, in the language of genetic algorithms,
escape local minima. At intervals, back crossing with ancestors or other expressions already in the
population using the CROSS algorithm was successfully employed.

6. Examples from the Catalog of Nearby Points

In sessions spent exploring image space in the neighborhood of our base point, we always
began. each session starting with our base point. Typically, in two hours, one or two aesthetically
worthwhile images could be mined. We would estimate that in an hour no more than a thousand
images could be examined under the search paradigm we used. Various researchers are currently
investigating ways to seed searches, set search goals, or process larger populations of nearby points.
This is an active field of research with many ideas waiting to be tried.

The examples from the catalog of images we obtined (Figures 4-11) represent a sample of
twenty-four culled from the eighty that were archived over the four month exploration period.
These eighty images were labeled using a chronological ordering as M1 through M80. In more
closely examining the primitive functions appearing in the eighty nearby images we obtained, we
were able to observe that there was a typical variation from the base genome in only five to seven
internal nodes, but that the number of changes in leaf nodes i.e., variables was erratic. This is
easily explained by the fact that the DIFFER algorithm substitutes for one internal node, while the
VARY algorithm replaces several of the leaves. The largest drift an internal multiplier a coefficient
reached was 1.11, but because of wholesale replacement of leaves, multipliers as high as 1.85 could
be found in them. :

On Understanding the Search Problem for Image Spaces 51

Figure 4: Images M4, M5, and M9.

Figure 5: Images M10, M13, and M18.

Figure 6: Images M22, M25, and M26.

Figure 7: Images M30, M35, and M37.

52 Gary R. Greenfield

Figure 8: Images M43, M45, and M48.

Figure 9: Images M52, M53, and M57.

Figure 10: Images M61, M68, and M72.

Figure 11: Images M74, M77, and M79.

On Understanding the Search Problem for Image Spaces 53

Even in contrasting gray-scale mode, the diversity of images found from nearby points speaks for
itself. It strikingly conveys the nature of the non-linearity of the image space that we have alluded
to. What conclusion de we draw from our experiment? Given the amount of time spent searching
the neighborhood and the diversity it produced, and remembering that this was a neighborhood of
but one fixed point in an infinite dimensional space, we believe that future work must be directed
towards increasing the throughput of images that can be examined.

One approach is to consider using software agents, perhaps in a co-evolutionary setting, to
help sift through the abundance of images in an image space. The elementary observation is
that a software agent could sample an expression’s pixel values numerically without ever having
to generate a visual image of the expression. Possibly the base image could be used to spawn
“fingerprint” agents which could preserve some of the aesthetic properties of the base image. Thus,
future descendants of the base image would be inspected by the fingerprint agents to make sure
that the desired visual continuity has been retained.

We are currently investigating the feasibility of dedicating large numbers of extremely feeble
agents to this finger printing task by embodying the agents as image processing filters. We will
evaluate the filters by attaching them to the images at fixed locations and measuring how well the
images area able to repel them. As an image evolves, it is subjected to more filters. Co-evolution
could vary these filters and allow them to spread across the image. ‘We think of these filters
as parasites so that a successfully evolved expression, an aesthetically valued expression in the
neighborhood of the base image, is one that will be able to repel many different kinds of parasites.

References

[1] Margaret A. Boden, Agents and creativity, Communications of the ACM, 37 No. 7 (July,
1994), 117-121.

[2] Richard Dawkins, The evolution of evolvability, 201-220, Artificial Life, Christopher Langton
(ed.), Addison Wesley, Reading, MA 1989.

[3] Gary Greenfield, An algorithmic palette tool, UR Technical Réport TR-94-02, 1994.

[4] Gary Greenfield, Graphical evolution experiments in artificial life, UR Technical Report, TR-
93-01, 1993.

[6] Gary Greenfield, New directions for evolving expressions, Bridges: Mathematical Connections
in Art, Music, and Science; Conference Proceedings 1998 (ed. R. Sarhangi), Gilliland Printing,
1998, 29-36.

[6] Aladin Ibrahim, GenShade, Ph.D. Dissertation, Texas A&M University, 1998.

[7] Lev Manovich, The engineering of vision and the aesthetics of computer art, Computer Graph-
ics, 28 No. 4 (November, 1994) 259-263.

[8] Karl Sims, Artificial evolution for computer graphics, Computer Gmﬁhics, 25 (1991) 319-328.

54 Gary R. Greenfield

[9] Steven Todd & William Latham, Evolutionary Art and Computers, Academic Press, San Diego,
CA 1992.

[10] Steven Todd & William Latham, Mutator, a subjective interface for evolution of computer
sculpture, IBM UKSC Report 248, 1991.

[11] David Voss, Sex is best, WIRED, December, 1995, 156-157.

