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Abstract 

In trying to improve upon Sims' art-by-choice technique known as "evolving expressions," 
artists have taken up the challenge of developing second generation implementations incorpo
rating additional features, modifications, and controls. In this paper we provide a context for 
this movement, and present a model which both simplifies and refines the original technique. 
Technical considerations include the. role of color space, tools for exploring image space, and 
rendering issues. 

1. Introduction 

Biologically inspired computer art techniques, relying on the Genetic Algorithm [5] for search 
and optimization, have led to the emergence of what Manovich calls "art by choice" [4]. By 
exploiting increased computer processing capability, the art-by-choice paradigm not only demands 
new algorithms for searching non-traditional, non-linear spaces on the basis of aesthetics, it also 
raises questions about the roles of image processing and color management, as well as rendering 
issues such as lighting and transparency. We should note at the outset that the methods we shall 
consider in this paper have thus far only been used for creating abstract art, and that final images 
we shall discuss have been "evolved" according to subjective aesthetics. The mathematical notion 
that is fundamental to this paper is that a work of computer art - an image that is rendered on a 
computer screen - is an element selected from a set of image points, and that set of image points 
comprises an image space. 

2. Background 

The origins of guiding .a search through an image space for the purpose of making computer 
generated art may be traced to computer artist Mark Wilson [10]. At this nascent stage in the 
development of art-by-choice, Wilson's techniques for stringing together drawing primitives via 
subprogram calls, and substituting pseudorandomly generated numerical values for formal argu
ments, represented an artistic exploration of a very simple image space. One might say that this 
image space, whose image points are elementary drawing programs, is artistically linear in the 
sense that perturbation of the random numbers used as formal arguments or shuffiings within the 
subprogram calling hierarchy produce expected results, whence searching the space is possible on in
tuitive grounds. Indeed, the challenge when using such a scheme is to design "interesting" drawing 
primitives and "ingenious" hierarchies of calling sequences for invoking those primitives. 
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A more sophisticated approach to exploring an image space, albeit a space still based on simple 
drawing primitives, is due to Richard Dawkins [2]. It is no accident that Dawkins' techniques 
were introduced at a time marking the start of the explosive growth in Artificial Life research. 
In Dawkins' model, a genotype rather than a programmer/artist assumes the responsibility, for 
overseeing the order and frequency with which· the drawing primitives will be invoked. The new 
themes are: (1) representation and encoding of each image point, which is still an elementary 
drawing program, of image space as a genotype, (2) mutation operators for genotypes, and (3) 
selection and rendering of a small set of closely related genotypes. Dawkins also made advances 
in organizing the visual display and creating the user interface for examining phenotypes rendered 
from the genotypes encountered during exploration of image space. Now, perhaps we can better 
understand why we usually think of image space as being highly non-linear. There is often a visual 
disparity between phenotypes arising from "related" genotypes, and quite possibly the notion of 
related genotypes is confused or lacks a quantitative measure. 

Better publicized than the methods of either Wilson or Dawkins, are the procedural meth
ods of artist William Latham [8], who with the computer expertise of Steven Todd developed the 
"Mutator" system to create three-dimensional, texture-mapped and ray-traced images on a su
percomputer. A noteworthy technical feature of this system is a user interface that allows one to 
explore the multi-dimensional image space under the guidance of an expert system [9]. For Latham, 
a genotype is a vector in a twenty-four dimensional real vector space. Though image space is highly 
non-linear in the sense discussed above, the Latham-Todd solution to the search dilemma in this 
space is "steering." A record of previous movement within the space helps predict distance and di
rection for future exploration. If the previous image visited is associated with the genotype afforded 
by the vector g, and the current image has genotype afforded by ii, then steering takes place in the 
direction s = ii - g. The greater the magnitude of s, the more likely image space points in a narrow 
region in the vicinity of ii + s will be selected, while the smaller the magnitude of s, the more likely 
image space points in the region widely scattered about ii + s will be selected. From published 
descriptions, it is not clear how successful steering is, but certainly it becomes more difficult as the 
dimension of image space - the number of parameters required to determine a point of the space 
- increases. 

The dimension of image space also plays a critical role in a novel image generation technique 
introduced by Karl Sims [6]. For Sims, points or genotypes of image space are mathematical 
expressions, which are then interpreted t~ produce the visual phenotypes. Again small sets of 
phenotypes are selected, their genotypes are evolved, mated, and mutated by an evolutionary 
algorithm and then the results are displayed so that the image development cycle can continue. 
Since Sims' expressions are in fact rooted trees, image space is the infinite-dimensional space of 
rooted trees. Exploring this space is difficult. Even running on a supercomputer, the time to 
render a single genot~pe must be taken into consideration. Sims' version of an expert system 
prunes, or rejects entirely, rooted trees which predict prohibitive rendering times. The key to 
coherent search in this non-'linear space is that many of the image processing functions stored 
at the nodes of the rooted trees representing the expressions are neighborhood image processing 
functions. Neighborhood image processing functions have the advantage of letting nearby pixels 
of the phenotype "communicate" with each other. Noise generators included among the image 
processing functions provide further global continuity to a rendered image. Finally, Sims' design 
posits phenotypes with intrinsic color, which means overall image design and image color are 
inextricably linked because the image processing functions "see" the pixels as RGB or HSV color 
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space vectors .. 

The "control problem" for searching images in these latter two systems is neatly codified by 
Margaret Boden, who formulates it in the context of agents [1]: 

[Sims] results are always "viable," in the sense that the newly transformed code will 
generate some visible image or other. But the process is utterly undisciplined. Although 
it could be used to help graphic designers come up with images they would never 
have thought of themselves, it cannot be used to explore or refine an image space in a 
systematic way. However, that is possible if the mutating agents are allowed to alter 
only the superficial parameters of the code. Significantly, these less powerful agents are 
preferred by [Latham] (italics added). 

In the next section, we shall introduce a hybrid model which strives to make exploration of an 
image space of expressions a more disciplined process. 

3. The Mathematical Model 

To begin to develop a mathematical model for our expressions, we start with a set V = 
{u, v, W, c, e} of variables. These variables will reside at the leaves of our rooted trees. We will 
let (u, v, w) denote an arbitrary point in the unit cube, c denote a constant, and we reserve the 
variable e for "indirection" which will be explained in a later section. At internal nodes of our 
rooted tree, we store pointwise image processing functions in either one or two variables. Thus we 
have a set of image processing primitives, F, defined on either the unit interval I, or on the unit 
square I x I. Our formal definition of an expression adds a new ingredient which vastly enlarges 
image space while trying to estab~ish a coherency between images rendered from nearby image 
points within the space. The idea is to attach "drift coefficients" to image processing primitives. 

DEFINITION 3.1. An expression is defined recursively to be a node (a b G), where a, bEl, and 
either G E V or G E F. If G E F, then each argument of G must again be a node. 

EXAMPLE 3.2. Assume F contains the normalized sine and cosine functions, nsin: I --t I 
defined by nsin(x) = O.5+0.5*sin(27rx) and ncos: I --t I defined by ncos(x) = O.5+0.5*cos(27rx).· 
Assume further that F contains the square root function nsqt and the function nmin(x, y) = 
min(x, y). Then, omitting superfluous parentheses, according to our definition a valid expression 
is: 

0.05 0.38 nmin(0.54 0.09 nsin(0.42 0.52 u), 0.03 0.69 
ncos(0.22 0.90 nsqt(0.04 0.63 v»). 

DEFINITION 3.3. An expression (a b G) is evaluated at a point (x, y) E I x I using the recursive 
evaluation rule £ : I x I --t I given by: 

£ (a b G) = a * £ (G) + b· (mod 1), 
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where, if G E V, then 

{ 
0 ifG=c 

£(G) = x if G = u 
y ifG=v 

and, if G E :F is a function in d variables whose arguments are the nodes nl, ... , nd, then 

While the formal model explains how the imaging algorithm is implemented, its details may 
obscure the relatively straight forward computations that yield images. An example may help to 
clarify the algorithm. 

EXAMPLE 3.4. To render the expression 

0.05 0.38 nmin(O.54 0.09 nsin(O.92 0.42 u), 0.04 0.63 v) 

as a 100 x 100 pixel image, we convert each pixel address (m, n) to the point with coordinates 
x = m/100 and y = n/100 in I x I and then evaluate the expression at (x, y). Therefore at the 
pixel with address, say (85,30), evaluation would proceed as follows: 

EI = £(0.040.63 v) = 0.04·0.30 + 0.63 = 0.012 . (mod 1); 
E2 = £(0.920.42 u) = 0.92 ·0.85 + 0.42 == 0.202 (mod 1), 
E3 = £(0.54 0.09 nsin(E2)) = 0.54 . 0.977 + 0.09 = 0.617 (mod 1), 
E = £(0.05 0.38 nmin(E3, Ed) = 0.05 . 0.617 + 0.38 = 0.411 (mod 1). 

Using a look-up table, the final value E is converted to a color which is then assigned to the pixel. 

The previous example shows how the evaluation map £ is used to manage the pointwise com
putation of an expression after inputs are assigned to those variables which are present at the leaf 
nodes of the expression. These inputs work their way up to the root to 'yield the result of the 
evaluation. This is the so-called "pandemonium model" where lower level processes shout their 
results to higher level processes. Figure 1 illustrates this by showing an example of a hierarchy of 
images implicitly formed at nodes during node evaluation. We must emphasize that evaluation is 
being performed over a discretization of the unit square. Notice how the presence of drift coeffi
cients affects the node evaluation algorithm: After passing through the image processing function, 
but before being broadcast to the parent node, the intermediate result is perturbed by the linear 
equation determined using the node's drift coefficients, and then only the fractional part of that 
result is broadcast to the parent node. 

4. Expressions as Genotypes 

. 
In preparation for exploring image space, an artist is initially presented with a randomly gen-

erated, expression consisting of two or three nodes. This genotype is obtained through a "creation 
event." The artist then explores image space by following an evolutionary trail of this genotype by 
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Figure 1: Image processing sequence showing images "bubbling up" to the root. (The final image 
at the foot is enlarged.) 

tracking small populations of its descendants using evolutionary operators to manipulate genotypes 
while viewing phenotypes. More precisely, mating algorithms and mutation algorithms, together 
with special "catastrophe" algorithms are applied to one or two expressions chosen from the current 
population to produce new expressions which may, if so desired, be used to add new expressions 
to the population, or to provide replacements for existing expressions in the population. Some of 
these algorithms are biologically inspired, but others have been designed specifically to enhance 
image space exploration. Mating algorithms include various crossover algorithms for rooted trees 
borrowed from the field of Genetic Algorithms. They also include genetic exchange algorithms such 
as swapping, grafting, or cloning that model transcription and replication errors that are thought 
to occur during biological genotype reproduction. Mutation algorithms include "bit flipping" oper
ators to randomly alter the contents of one or more nodes of an expression. Catastrophe algorithms 
provide for significant gain or loss of genetic material, thereby simulating developmental advance 
or retreat within the population on an evolutionary time scale. For the artist, however, the most 
powerful algorithms are·the ones that subject genotypes to "genetic drift" by gently perturbing the 
drift coefficients at each node by small random amounts. Genetic drift allows the artist to slow 
the evolution of the genotype in the sense of Sims, yet explore "nearby" genotypes in the sense of 
Latham. 

5. The Art of Evolving Expressions 

In the previous section we noted that when evolving an image, the artist assumes control 
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following a creation event. The process leading to the development of a final image however 
is governed by artistic expressivity. Such expressivity might be guided by emotional response, 
subconscious motivation, or even simple curiosity. Before we examine some of the control techniques 
we have at our disposal for achieving this expressivity, it seems appropriate to include a slightly 
different point of view about the artistic nature of art-by-choice. This following excerpt is taken 
from an article by Tait [7] whose primary concern is with the broader question of whether purely 
computer-generated imagery is fine art: 

The work of Karl Sims stands out in bold relief against a background of technology 
posing as art ... What then is the creative need fulfilled by Karl Sims algorithms? .. I 
sense that he has opened a channel for exploration of beauty, a creative subject that has 
also become out of fashion in the high tech world. The exploration of beauty is however 
a timeless theme winding its way throughout human existence. It is a rare occasion 
when a new creative tool appears that allows us to reach out and touch beauty." 

By definition, a phenotype is an evaluation of a genotype over a discretized version of the unit 
square. Therefore, the most important control technique takes place during the step where a visual 
image is obtained by transforming the numerical values resulting from the evaluation function into 
colors using look-up tables. This use of extrinsic color as opposed to intrinsic color serves to guide 
and hence to control image space exploration in two simultaneous but distinct ways, monitoring the 
image coloration in a preferred palette on one hand, while refining or developing the "structure" 
(Le., overall design) of the image by switching among contrasting palettes on the other. We find 
color schemes with varying contrast properties are helpful, even necessary, for identifying emerging 
regions, shapes, contours, and their spatial relationships within phenotypes. In fact, contrasting 
palettes are of such critical importance, that organizing sequences of hues in non-traditional ways 
is our principal method for fully gauging image structure [3]. 

Familiarity with the mating and mutation algorithms provide additional controls. One exam
ple is revitalizing a large, stagnant genotype expression by "grafting" it onto a smaller genotype 
expression. There is a heuristic for why it is reasonable to expect this to be a successful strategy: 
We evolve the genotype for the most part by modifying its branches and leaves. Wholesale grafting 
develops its root structure. A second example is to employ a catastrophe algorithm to randomize 
the contents of a portion of the leaves. Exactly why this is successful is not entirely clear. Perhaps 
by keeping intact the core image processing functionality afforded by the genotype expression, a 
balance is struck between introducing new characteristics while retaining old ones. 

When an evolved expression reaches a size of about thirty nodes, it begins to "stabilize" thereby 
setting the stage for a different set of artistic controls to come into play. These are controls for 
obtaining fine variations within the phenotype. For example, one technique is to evolve a niche 
population of expressions from one specimen. Each genotype in the niche population has a few nodes 
(either internal or leaf nodes) that have been altered by bit flip pings from the original specimen. 
The technique proceeds by mating within this population using crossover operators. The design 
feature that enhances this fine-tuning control is the underlying hidden genetic drift algorithm that 
mildly perturbs all the drift coefficients after each and every mutation or mating operator is invoked. 
Figure 2 shows an example of a finished piece that was made using the techniques we have discussed. 
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Figure 2: Mixed Mode. 

6. Additional Features 

We remarked previously that implicit in our overall design is the capability of rendering three 
dimensional images. We achieve this by simply using the variable w for the third spatial coordinate. 
After this is done, rendering proceeds by voxelizing the surface of the unit cube. Unfortunately, 
lighting and transparency problems must be dealt with at this juncture. Space considerations 
prevent us from covering the details behind surface-lit and volume-lit methods and their trade-offs. 

Main stream computer art tools are strongly biased towards image compositing - constructing 
an image by building it up in layers. Our images are resolution independent. Resolution is governed 
by the discretization of the unit square alone, so our options in this area are somewhat limited. 
There is, however, a feature reminiscent of compositing that can be implemented. Expressions in 
which the variable e appears allow the artist to exercise the option of either treating this variable 
as a null input, or treating this variable as an input from a background expression, say H. Formally, 
at the point (x, y) E I X I, 

£(e) = {£(H) if "cou:positing" 
o otherWIse 

We think of occurrences of the variable e in an expression G as providing "sockets" for feeding the 
background image.defined by H into G. While this has produced many successful images, we have 
no biological analogy to justify its inclusion within our framework. Hence we have no motivation 
or rationale for deciding in what situations it should be invoked. Further investigation into such 
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radical "extensions" of the basic technique is required. 

References 

[1] Margaret A. Boden, Agents and creativity, Communications of the ACM, 37 No.7 (July, 
1994), 117-121. 

[2] Richard Dawkins, The evolution of evolvability, 201-220, Artificial Life, Christopher Langton 
(ed.), Addison Wesley, Reading, MA 1989. 

[3] Gary Greenfield, An algorithmic palette tool, UR Technical Report TR-94-02, 1994. 

[4] Lev Manovich, The engineering of vision and the aesthetics of computer art, Computer Graph
ics, 28 No.4 (November, 1994) 259-263. 

[5] Gregory J. E. Rawlins (ed), Foundations of Genetic Algorithms, Morgan Kaufmann, San Ma
teo, CA 1991. 

[6] Karl Sims, Artificial evolution for computer graphics, Computer Graphics, 25 (1991) 319-328. 

[7] Will Tait, The space between: fine art and technology, Computer Graphics, 32 (Febuary, 
1998), 17-19. 

[8] Steven Todd & William Latham, Evolutionary Art and Computers, Academic Press, San Diego, 
CA 1992. 

[9] Steven Todd & William Latham, Mutator, a subjective interface for evolution of computer 
sculpture, IBM UKSC Report 248, 1991. 

[10] Mark Wilson, Drawing with Computers, Perigee Books, New York, NY 1985. 


